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Abstract: Many hybrid control problems of practical interest can be decomposed in a
hierarchy of control objectives, where each objective refers to a particular time scale and to
a particular level of measurement aggregation. It is common engineering practice to exploit
this hierarchical structure in the development of ad hoc solutions to hybrid control problems
that are far beyond the computational limitations of known methods for systematic hybrid
system design. This paper extends a known design method to (i) benefit from hierarchical
decompositions provided by engineering intuition, and to (ii) allow for a formal proof that
the composition of the individual layers forms an overall solution. Copyright c© 2003 IFAC
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1. INTRODUCTION

In the basic hybrid control configuration, continuous
dynamics interact with a discrete event supervisor via
a suitable interface that mediates between discrete
and continuous signals. A widely accepted closed-
loop model for this configuration are so called hy-
brid automata (Alur et al., 2000; Henzinger, 1996). In
this paper, we take the perspective of the supervisor
and summarise the remaining entities as the hybrid
plant. Control specifications are formalised as lan-
guages over the alphabet of external discrete events,
and the task of the supervisor is to enforce that the
closed loop evolves on acceptable trajectories accord-
ing to the specification. A crucial feature of the hybrid
setting is that state machine realisations of the plant
typically evolve on a real-valued vector, and hence
uncountable, state space. The core idea of abstraction-
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based approaches is that, rather than synthesising a
supervisor for the actual plant behaviour, one works
instead with a plant abstraction that can be realised by
a finite automaton (Koutsoukos et al., 2000; Cury et
al., 1998; Lunze et al., 1997; Philips et al., 1999). In
(Moor and Raisch, 1999; Moor et al., 2002), we de-
velop an abstraction-based synthesis procedure within
Willems’ behavioural systems theory. Here, the hybrid
plant is represented by its external behaviour, defined
as the set Bp of all sequences of pairs of input and
output events that are compatible with the hybrid plant
dynamics. Our key result is a synthesis procedure that
solves the original control problem via a plant ab-
straction Bca with Bca ⊇ Bp.

Although the considered abstractions Bca are inter-
nally based on state aggregation, they are defined on
the same signal space and refer to the same time scale
as the original plant. On the other hand, many appli-
cations suggest an obvious decomposition of the over-
all control problem in a number of subproblems that
refer to a hierarchy of time scales and measurement



aggregations. It is common engineering practice to use
this type of decomposition to find ad hoc solutions
that are far beyond the computational limitations of
known systematic design methods. In this paper, we
extend our previous work by additional layers between
plant and supervisor to represent a hierarchy of time
scales, measurement aggregations, subproblems and
their solutions. We develop a method that is grounded
in the engineering intuition used for the hierarchical ad
hoc design of hybrid systems, and additionally provide
a formal proof that the composition of all individual
layers solves the original problem.

The framework here is inspired by that of hierarchi-
cal DES theory (Wong and Wonham, 1996), but is
technically quite distinct because we need to use an
input/output structure that adequately represents both
time and event driven dynamics for hybrid systems.
As in other hierarchical approaches to control (Pappas
et al., 2000; Caines and Wei, 1998), we are concerned
with the preservation of fundamental properties across
levels of abstraction.

The paper is organised as follows. Section 2 sum-
marises key results from (Moor and Raisch, 1999;
Moor et al., 2002). In Section 3, we present a two-
level design that is readily shown to enforce the speci-
fication. The question whether the composed overall
system satisfies standard admissibility conditions is
more subtle. We develop sufficient criteria in Sec-
tions 4 and 5 for quasi-continuous low-level control
and measurement aggregation, respectively. Section 6
extends the results to a multi-level configuration.

2. ABSTRACTION-BASED SUPERVISORY
CONTROL

The purpose of this section is to briefly summarise
key results of our earlier work (Moor and Raisch,
1999; Moor et al., 2002) in abstraction-based super-
visory controller synthesis for hybrid systems within
Willems’ behavioural systems theory (Willems, 1991).

Willems defines the behaviour of a dynamical system
as the set of all trajectories on which the system
can possibly evolve. In this paper, we restrict our
considerations to the discrete-times axis N0:

Definition 1. A behaviour B over a signal space W is
a set of maps w : N0 → W ; i.e. B ⊆ W N0 . 2

The external plant behaviour Bp ⊆ WN0 is defined
as the set of all event sequences on which the hybrid
plant can evolve in open loop. In (Moor et al., 2001),
we carefully derive Bp for a broad class of hybrid
systems based on the hybrid automata model (Alur
et al., 2000; Henzinger, 1996) and observe that Bp

2
N denotes the positive integers and N0 := N ∪ {0}. The set of all

sequences in W is denoted W N0 := {w : N0 → W }.

inherits the input/output structure from the underlying
continuous dynamics; i.e. we have W := U × Y
and Bp conforms to a slightly weakened version of
Willems’ I/O behaviours:

Definition 2. A behaviour B ⊆ W N0 to said to be a
(strict) I/- behaviour w.r.t. (U, Y ), if 3

(i) the input is free, i.e. PUB = UN0 and

(ii) the output does (strictly) not anticipate the in-
put, i.e.
PUw̃|[0,k] = PUŵ|[0,k] ⇒ (∃ w ∈ B)[
PYw|[0,k] = PYw̃|[0,k] and PUw = PUŵ]

for all k ∈ N0, w̃, ŵ ∈ B; for the strict
case the premiss on the l.h.s. is weakened to
PUw̃|[0,k) = PUŵ|[0,k).

Adapting the concepts of supervisory control theory
for DESs (Ramadge and Wonham, 1989) to the be-
havioural framework, the task of a supervisor Bsup ⊆

WN0 is to restrict a plant behaviour Bp ⊆ WN0 so
that the closed loop is guaranteed to evolve only on
acceptable signals Bspec ⊆ WN0 . The closed-loop
behaviour is defined by Bcl := Bp ∩ Bsup and Bsup
is said to enforce the specification if Bcl ⊆ Bspec.

In examining the notion of I/- behaviours, we identify
two admissibility criteria for the interconnection of
plant and supervisor: (i) any restrictions on the plant
output shall only be imposed indirectly by restricting
the plant input; and (ii) at any time there must be
possible future evolution. Formally, we state:

Definition 3. A supervisor Bsup ⊆ WN0 is admissible
to the plant Bp ⊆ WN0 if

(i) Bsup is generically implementable, i.e. k ∈ N0,
w|[0,k] ∈ Bsup|[0,k], w̃|[0,k] ∈ W k+1, w̃|[0,k] ≈y
w|[0,k] implies w̃|[0,k] ∈ Bsup|[0,k]; and

(ii) Bp and Bsup are non-conflicting, i.e. Bp|[0,k] ∩

Bsup|[0,k] = (Bp ∩ Bsup)|[0,k] for all k ∈ N0.

This leads to the following formulation of the problem
of supervisory control.

Definition 4. Given a plant Bp ⊆ WN0 , W =

U × Y , and a specification Bspec ⊆ WN0 , the pair
(Bp, Bspec)cp is a supervisory control problem. A
supervisor Bsup ⊆ WN0 that is admissible to Bp
and that enforces Bspec is said to be a solution of
(Bp, Bspec)cp.

3 The restriction operator ( · )|[k1,k2) maps sequences w ∈ W N0

to finite strings w|[k1,k2) := w(k1)w(k1 + 1) · · · w(k2 − 1) ∈

W k2−k1 , where we use W 0 := {ε} and ε denotes the empty string.
For closed intervals, the operator ( · )|[k1,k2] is defined accordingly.
For W = U × Y , we denote PU and PY the natural projection
operators to the respective component, i.e.PUw = u and PYw = y
for w = (u, y), u ∈ UN0 , y ∈ Y N0 . We use w̃|[0,k] ≈y w|[0,k]
as an abbreviation for the two strings to be identical up to the
last output event, i.e. PUw̃|[0,k] = PUw|[0,k] and PYw̃|[0,k) =

PYw|[0,k).



If both Bp and Bspec were realised by finite automata,
the least restrictive solution of (Bp, Bspec)cp could be
readily computed. While a finite automaton realisation
for Bspec is a modest requirement, the hybrid plant
in general is not realisable on a finite state space.
We approach the problem by replacing Bp with an
abstraction Bca (so Bp ⊆ Bca) that is realised by
a finite automaton; so we can establish a solution
Bsup of (Bca, Bspec)cp. Clearly, Bsup enforces the
specification for the original plant: Bp ∩Bsup ⊆ Bp ∩

Bca ⊆ Bspec. An argument that shows that Bsup also
is admissible to Bp can be based on the following
notion of completeness:

Definition 5. A behaviour B ⊆ W N0 is complete if
w ∈ B ⇔ ∀ k ∈ N0 : w|[0,k] ∈ B|[0,k] .

By the following proposition, admissibility of a super-
visor is independent of the particular plant dynamics
provided that all involved behaviours are complete.

Proposition 6. Let Bp ⊆ WN0 be a complete I/- be-
haviour and Bsup ⊆ WN0 be complete and gener-
ically implementable. Then Bp and Bsup are non-
conflicting.

For the rest of this paper, we restrict consideration to
complete behaviours, and we obtain our main result
for abstraction-based supervisory control as a conse-
quence of Proposition 6.

Theorem 7. Let Bca ⊆ WN0 , W = U × Y , be
an abstraction of an I/- behaviour Bp ⊆ WN0 , let
Bspec ⊆ WN0 , and let Bsup ⊆ WN0 be a solution
to the supervisory control problem (Bca, Bspec)cp. If
Bp and Bsup are complete then Bsup is a solution of
(Bp, Bspec)cp.

3. A TWO-LEVEL BOTTOM-UP DESIGN

We motivate our approach with a mobile robot sce-
nario, in which a robot shall patrol some area. Suppose
we are given the robot behaviour B

L
p over a signal

space WL = UL × YL, where UL represents low-level
inputs for acceleration and YL represents velocity and
position. The control objective can be represented by
the set B

L
spec ⊆ WN0

L of all signals that correspond
to some motion that we regard as an acceptable pa-
troling behaviour, e.g. we may partition the area and
consider all paths as acceptable that pass through the
partition blocks in a cyclic fashion. This leads to the
control problem (BL

p, B
L
spec)cp and we seek a solution

B
L
sup ⊆ WN0

L . However, a reasonably accurate plant
model BL

p will be based on the mechanics of the robot,
and it appears impractical to solve (BL

p, B
L
spec)cp “in

one go”. Engineering intuition suggests that we first
design a family of low-level controllers that imple-
ment elementary manoeuvres like “move forward”,

“turn right”, “turn left”. In a second design step, we
ask for a high-level supervisor to schedule the ele-
mentary manoeuvres to achieve the desired patroling
behaviour. The high-level supervisor B

H
sup ⊆ WN0

H

operates on a high-level signal space WH = UH × YH,
where each control action in UH selects a particular
low-level controller and the measurement events in
YH correspond to a coarse quantisation of the robot
position, perhaps based on the partition blocks used
for the statement of B

L
spec.

The relationship between low-level and high-level sig-
nals is formally represented by a behaviour Bım over
WH × WL = UH × YH × UL × YL; see Figure 1. Note
that the behaviour Bım may itself exhibit nontrivial
dynamics and therefore provides a universal tool to
link the two levels.

B
L
p: low-level plant model

B
H
sup: high-level supervisor

Bım: aggregation & low-level control

uL yL

B
H
ım[BL

p]

B
L
ım[BH

sup]

uH yH

Fig. 1. Plant (supervisor) perspective, dashed (dotted)

From the perspective of the low-level plant B
L
p, the

interconnection of Bım with B
H
sup plays the role of a

compound low-level supervisor B
L
ım[BH

sup] over WL,
as indicated by the dashed box in Figure 1. The ex-
ternal behaviour B

L
ım[BH

sup] is given by the projection
of Bım into WN0

L with the internal high-level signal
restricted to B

H
sup:

B
L
ım[BH

sup] :=

{wL| (∃ wH ∈ B
H
sup)[ (wH, wL) ∈ Bım ]}. (1)

In addressing the original problem (BL
p, B

L
spec)cp, we

require that B
L
ım[BH

sup] solves (BL
p, B

L
spec)cp, and, in

particular, enforces the specification:

B
L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec . (2)

From the perspective of the high-level supervisor
B

H
sup, we obtain from interconnecting Bım with B

L
p a

compound high-level plant B
H
ım[BL

p] over WH (dotted
box in Figure 1):

B
H
ım[BL

p] :=

{wH| (∃ wL ∈ B
L
p)[ (wH, wL) ∈ Bım ]} . (3)

Although we are not given a high-level specification,
we still need to fulfil the admissibility criteria for
system interconnection: B

H
sup must be generically im-

plementable, and B
H
ım[BL

p] and B
H
sup must be non-

conflicting. We summarise our discussion of Figure 1:

Definition 8. The pair (Bım, B
H
sup)tl is a two-level hi-

erarchical solution to the supervisory control problem
(BL

p, B
L
spec)cp if



(i) B
L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec, and

(iia) B
L
ım[BH

sup] is admissible to B
L
p, and

(iib) B
H
sup is admissible to B

H
ım[BL

p].

We are now in the position to recover the intuitive
bottom-up-design motivated by the mobile robot sce-
nario. In a first step, we represent the intended re-
lationship between high-level signals and low-level
signals. Formally, let BHL

spec ⊆ (WH×WL)
N0 denote the

set of all signal pairs (wH, wL) that conform with the
desired effect of high-level control actions on the low-
level plant B

L
p, and the desired scheme of measure-

ment aggregation to generate high-level measurement
events from low-level signals. We then ask the inter-
mediate layer Bım to enforce the specification B

HL
spec

when interconnected with the low-level plant BL
p. This

condition is expressed by the following inclusion:

{(wH, wL) ∈ Bım| wL ∈ B
L
p} ⊆ B

HL
spec . (4)

Suppose we have designed Bım according to Eq. (4)
and, in a second step, we want to design B

H
sup. Thus,

we are looking for an abstraction B̃
H
p of the high-level

plant BH
ım[BL

p] and for a high-level specification B̃
H
spec

that expresses B
L
spec in terms of high-level signals.

Both can be obtained from Eq. (4):

B̃
H
p := {wH| (∃ wL)[ (wH, wL) ∈ B

HL
spec] } ; (5)

B̃
H
spec := {wH| (∀ wL) [

(wH, wL) ∈ B
HL
spec ⇒ wL ∈ B

L
spec ] } . (6)

Observe that the control problem (B̃H
p, B̃

H
spec)cp does

not depend on the actual low-level plant under low-
level control B

H
ım[BL

p], but only on the intended out-
come B

HL
spec of the preceeding low-level design. In our

motivational robot scenario, B
HL
spec may be modelled

by a linear hybrid automata (Alur et al., 2000) in
which a two dimensional polyhedral differential inclu-
sion specifies constraints on the continuous evolution
of the robot’s position, reset relations abstract motion
during the settling time of the low-level controllers,
and mode invariants correspond to the measurement
aggregation in that the high-level supervisor is only
notified of discrete mode transitions. A high-level su-
pervisor B

H
sup that solves (B̃H

p, B̃
H
spec)cp can then be

computed efficiently, e.g. using the methods presented
in (Moor and Raisch, 1999; Moor et al., 2002).

In general, the choice of B
HL
spec can be guided by the

same engineering intuition that we would use in a
hierarchical ad hoc design. The contribution here is
to develop a framework in which we can formally
prove that the composition of a high-level controller
with an intermediate layer forms a solution of the
original problem. Proposition 9 provides a first step
in this proof and shows that a high-level supervisor
design based on (B̃H

p , B̃
H
spec)cp satisfies requirement

(i) in Definition 8: the overall configuration enforces
the low-level specification. In the following sections,
we address the admissibility criteria (iia) and (iib).

Proposition 9. Any solution B
H
sup of (B̃H

p, B̃
H
spec)cp

satisfies B
L
p ∩ B

L
ım[BH

sup] ⊆ B
L
spec.

4. ADMISSIBILITY: UNIFORM TIME SCALES

What properties should we ask for Bım in order to
satisfy the admissibility criteria in Definition 8? In
this section, we examine the case of quasi-continuous
controllers, i.e. controllers that have been designed
by continuous methods but are technically realised by
digital hardware at a reasonably high sampling rate
and a comparatively fine quantisation. An important
feature of this setting is a uniform time scale on all
signals, e.g. yL(k) takes place at the same physical
time as yH(k).

Natural candidates for Bım are I/- behaviours, where
uH and yL play the role of the input to Bım while yH

and uL are considered outputs. In addition, we require
that Bım and B

L
p be complete, and from this conclude

that the I/- property of B
L
p is passed on to B

H
ım[BL

p]. In
order to derive completeness of B

H
ım[BL

p], we require
that all signal spaces are finite sets.

Lemma 10. If Bım is a complete strict I/- behaviour
w.r.t. (UH × YL, YH × UL), and if B

L
p is a complete I/-

behaviour w.r.t. (UL, YL), then B
H
ım[BL

p] is a complete
I/- behaviour w.r.t. (UH, YH).

The same criteria not only preserves the I/- structure
of B

L
p but also generic implementability of B

H
sup.

Lemma 11. If Bım is a complete strict I/- behaviour
w.r.t. (UH × YL, YH × UL) , and if B

H
sup is complete

and generically implementable, then B
L
ım[BH

sup] is
complete and generically implementable.

Suppose we have found a complete solution B
H
sup

of (B̃H
p , B̃

H
spec)cp, and suppose that B

HL
spec is imple-

mented by a complete strict I/- behaviour Bım. Under
the hypothesis of Lemmata 11 and 10 we conclude
together with Proposition 6 that the admissibility cri-
teria (iia) and (iib), Definition 8, are satisfied. Hence,
by Proposition 9, the pair (Bım, B

H
sup)tl is a two-level

hierarchical solution of (BL
p, B

L
spec)cp.

5. ADMISSIBILITY: DIFFERENT TIME SCALES

The proposed high-level measurement signal in the
robot scenario shall notify the high-level supervisor
whenever the robot position passes into a different par-
tition cell. Therefore, high-level and low-level signals
refer to different time scales. Furthermore, the rela-
tionship between the high-level and low-level timing
is not determined by a fixed factor but is event driven
by the low-level measurement signal. We develop an



internal structure for Bım that implements this dy-
namic relationship as a general tool of measurement
aggregation.

The following definition extends the basic notion of
causal maps (e.g. (Khalil, 1996)) in referring to differ-
ent time scales for cause and effect, respectively:

Definition 12. Let F : UN0 → Y N0 and T : UN0 →

N0
N0 . The operator F is said to be causal if

ũ|[0,k] = û|[0,k] ⇒ F(ũ)|[0,k] = F(û)|[0,k] (7)

for all k ∈ N0, ũ, û ∈ UN0 . The operator F is said to
be strictly causal if

ũ|[0,k) = û|[0,k) ⇒ F(ũ)|[0,k] = F(û)|[0,k] (8)

for all k ∈ N0, ũ, û ∈ UN0 . The operator T is said to
be a dynamic time scale if T is strictly causal and if the
time transformation T (u) : N0 → N0 is surjective and
monotone increasing for all u ∈ U N0 . The operator
F is said to be causal w.r.t. T if T is a dynamic time
scale and if

ũ|[0, j] = û|[0, j] ⇒ F(ũ)|[0,k] = F(û)|[0,k] (9)

for k = T (ũ)( j) and all j ∈ N0, ũ, û ∈ UN0 .

For a fixed input u, the time transformation T (u) maps
low-level time j ∈ N0 to high-level time k ∈ N0. By
requiring that T itself is a strictly causal operator, we
ensure that at any instant of time the transformation
T (u) only depends on the strict past of u.

In our target application, the low-level measurement
signal yL plays the role of the input u and drives the
time transformation T (yL). The high-level measure-
ment is generated by yH = F(yL) where the operator
F : Y N0

L → Y N0
H is required to be causal w.r.t. T . As an

example for a realisation of F , consider an automaton
that generates high-level events whenever the low-
level measurement equals a given value or completes
a given cycle.

We relate high-level controls uH and low-level controls
uL by a sample-and-hold device that is triggered by the
time transformation T (yL); i.e. successive high-level
control actions are passed on to the lower level when-
ever a high-level measurement is generated. Formally,
this is expressed by uL = uH ◦ T (yL).

In summary, our candidate Bım is constructed from a
dynamic time scale T and an operator F that is causal
w.r.t. T . Figure 2 illustrates the formal definition:

Bım := {(uH, yH, uL, yL)|

yH = F(yL) and uL = uH ◦ T (yL)} . (10)

Our candidate Bım turns out to be complete:

Proposition 13. Given a dynamic time scale T : Y N0
L →

N0
N0 and an operator F : Y N0

L → Y N0
H that is causal

w.r.t. T , define Bım by Eq. (10). Then Bım is com-
plete.

uL( j )

uH(k)

yL( j )

yH(k)

high-level time scale

low-level time scale j ∈ N0

k ∈ N0

Fig. 2. Relation between time scales in Bım

Analogous to the results in Section 4, the candidate
Bım from Eq. (10) preserves the input/output structure
of a plant and generic implementability of a supervi-
sor.

Lemma 14. Under the hypothesis of Proposition 13,
and if B

L
p is a complete I/- behaviour w.r.t. (UL, YL),

it follows that B
H
ım[BL

p] is a complete I/- behaviour
w.r.t. (UH, YH).

Lemma 15. Under the hypothesis of Proposition 13,
and provided that B

H
sup is complete and generically

implementable, it follows that B
L
ım[BH

sup] is complete
and generically implementable.

Along the same line of thought as in the previous
section, Lemmata 14 and 15 can be used to show that
if the intermediate specification B

HL
spec is implemented

through a behaviour Bım according to Eq. (10), the
pair (Bım, B

H
sup)tl is a two-level hierarchical solution

of (BL
p, B

L
spec)cp.

6. MULTI-LEVEL HIERARCHICAL DESIGN

To treat typical hybrid control configurations, we
would like to combine at least two intermediate layers
for low-level control and measurement aggregation,
respectively. In this section, we show that our results
readily extend to a multi-level configuration.

Let Wi = Ui × Yi denote the signal space on the
i -th level, 0 ≤ i ≤ m, and consider a low-level
plant B

0
p over W0, intermediate layers B

i,i−1
ım over

Wi × Wi−1, 1 ≤ i ≤ m, and a high-level supervisor
B

m
sup over Wm . We assume that B

0
p is a complete

I/- behaviour, that B
m
sup is complete and generically

implementable, and that each intermediate layer is of
either type discussed in Section 4 and 5. For the levels
i , 0 ≤ i < m, we iteratively define the behaviour from
the plant perspective

B
i
sup := {wi | ∃ wi+1 ∈ B

i+1
sup : (wi+1, wi ) ∈ B

i+1,i
ım },

and, for i , 0 < i ≤ m, from the supervisor perspective:

B
i
p := {wi | ∃ wi−1 ∈ B

i−1
p : (wi , wi−1) ∈ B

i,i−1
ım }.



Definition 16. The tuple (B
1,0
ım , B

2,1
ım , . . . B

m,m−1
ım ,

B
m
sup)ml is said to be an (m+1)-level hierarchical

solution to the control problem (B0
p, B

0
spec)cp if

(i) B
0
p ∩ B

0
sup ⊆ B

0
spec, and

(ii) for all i , 0 ≤ i ≤ m, B
i
sup is admissible to B

i
p.

We propose an iterative bottom-up design. Assume
that, after the design of n layers, we were given
behaviours over appropriate signal spaces such that for
all i , 0 < i ≤ n:

(a) B
i
p ⊆ B̃

i
p ,

(b) {(wi , wi−1) ∈ B
i,i−1
ım | wi−1 ∈ B̃

i−1
p } ⊆ B

i,i−1
spec ,

(c) wi ∈ B
i
spec and (wi , wi−1) ∈ B

i,i−1
spec

⇒ wi−1 ∈ B
i−1
spec .

We design the (n+1)-th layer to satisfy a specification
B

n+1,n
spec over Wn+1 × Wn . Suppose we can enforce the

specification for the plant abstraction B̃
n
p ; i.e. we find

B
n+1,n
ım that satisfies (b) at i = n+1. As an abstraction

for B
n+1
p we use B̃

n+1
p := PWn+1B

n+1,n
spec , to satisfy

(a) at i = n + 1. Finally, we choose

B
n+1
spec := {wn+1| (∀ wn) [

(wn+1, wn) ∈ B
n+1,n
spec ⇒ wn ∈ B

n
spec ] } . (11)

Clearly our choice of B
n+1
spec satisfies (c). Hence, all

requirements are satisfied at i = n + 1 and we can
iterate the procedure for n = 1, 2, . . .m. As top-
level supervisor B

m
sup we use a complete solution of

(B̃m
p , B

m
spec)cp. It is readily seen that B

0
p ∩ B

0
sup ⊆

B
0
spec and, hence, the design satisfies condition (i).

To verify condition (ii), we invoke the lemmata from
the two previous sections. By successive application
of Lemmata 10 and 14 for increasing i , the complete-
ness and the I/- property of B

i
p is inherited by B

i+1
p .

Similarly, by successive application of Lemmata 11
and 15 for decreasing i , the completeness and the
generic implementability of B

i
sup passes on to B

i−1
sup .

By Proposition 6, we conclude that (ii) is satisfied.

7. CONCLUSION

In this paper, we extend the behavioural framework
to hybrid system synthesis (Moor and Raisch, 1999;
Moor et al., 2002) with additional layers between
plant and supervisor to represent a hierarchy of time
scales, measurement aggregations, subproblems and
their solutions. Technically, our main contribution are
sufficient criteria that guarantee standard admissibil-
ity conditions for the hierarchical composition of the
overall control system.

Although we do account for internal continuous dy-
namics, all external signals are event sequences. This
facilitates the discussion and we can focus our ef-
forts on the hierarchical architecture. We argue that in

engineering realisations of complex control architec-
tures virtually all continuous controllers will be im-
plemented by digital hardware in a quasi-continuous
setting. This is covered by our framework, which fa-
cilitates the usage of both traditional continuous tech-
niques for time driven dynamics and DES techniques
for event driven dynamics.
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