
Computational Advantages
of a Two-level Hybrid Control Architecture

T. Moor ∗ J. Raisch § J.M. Davoren ∗

Abstract

We investigate a two-level hierarchical architecture for hy-
brid control. On the top level, a discrete supervisory
controller acts on quantised measurement information by
switching between a finite number of continuous controllers
in order to enforce a language inclusion specification. A
widely accepted approach to this problem is to first con-
struct a discrete abstraction of the continuous low-level
feedback loops and to subsequently resort to DES tech-
niques to solve the high-level synthesis problem. While
in principle adopting this approach, we show how to use
the structure induced by the low-level controllers to signif-
icantly increase computational efficiency of the abstraction
procedure. Our methodology enables the system designer
to exploit a trade-off between the increase in computational
efficiency and the loss in controller flexibility caused by the
specific hierarchical structure.

Keywords: hybrid systems, hierarchical control, discrete
abstraction, supervisory controller synthesis.

1 Introduction

Hybrid control systems are mathematical models of het-
erogeneous systems consisting of digital components in-
teracting in real-time with continuous processes. In par-
ticular the task of controller design for such systems has
received extensive attention in the recent literature e.g.
[AB+00, FDF99, KA+00, LTS99, MR99]. In this paper,
we reexamine a scenario that has been commonly used as
a motivation for hybrid control. It consists of a continuous
plant model, a finite number of continuous controllers and
a discrete supervisor which acts on quantised measurement
information (events) by switching between the continuous
controllers; see Figure 1. A standard problem in hybrid
control is to synthesise a discrete supervisor such that the
overall control system satisfies a language inclusion specifi-
cation; e.g. [KA+00, MR99, RO98]. Solutions to this prob-
lem are typically based on computing a suitable (i.e., con-
servative) discrete abstraction for the continuous part of the
overall system. The crucial computational challenge in this

∗Research School of Information Sciences and Engineering, Aus-
tralian National University, Canberra, email: thomas.moor@anu.edu.au,
j.m.davoren@anu.edu.au, research partially supported by US Office of
Naval Research, Grant N 00014-98-1-0535

§Lehrstuhl für Systemtheorie technischer Prozesse, Otto-von-Guericke
Universität, and Max-Planck-Institut für Dynamik komplexer technischer
Systeme, Magdeburg, Germany, email: raisch@mpi-magdeburg.mpg.de

step is to reliably estimate sets of continuous states reach-
able under continuous flows from different sets of initial
conditions. For fairly large classes of continuous dynamics
this can be done by employing a regular quantisation grid in
the continuous state space; e.g. [AB+00, FMR00, LTS99]1.
Clearly, this puts a rather stringent limit on the problem state
dimension.

supervisory controller (DES)

A/D

cont. controller 2

cont. controller 1

cont. contr. |Win|

u(t) ∈
� m y(t) ∈

� p

continuous dynamics with discrete external signals

c(k) ∈ Win a(k) ∈ Wout

continuous plant (ODE)

Figure 1: Two-level hierarchical control architecture

It is obvious that the scenario described above exhibits a
(two-level) hierarchical structure: the continuous feedback
loops can be interpreted as lower-level control, the supervi-
sor to be designed as a higher-level controller. In the con-
text of control, hierarchies are mostly introduced to “break”
a complex problem into a number of more tractable prob-
lems [CW98, FDF99, PLS00, RIM00, WW96] and hence
to reduce the overall “solution effort”. We therefore expect
that the hierarchical structure in our set-up can be exploited
to significantly reduce the computational burden in the ab-
straction step. More precisely, we will argue that the pres-
ence of low-level controllers may considerably reduce the
dimension of the part of the continuous state space that is
relevant for the abstraction step.

The paper is organised as follows. In Section 2 we state a
1Technically, [LTS99] restates the reachability problem as a partial dif-

ferential equation, which is then to be solved numerically.

model of the considered class of hybrid systems and give a
link to the problem of supervisory controller synthesis. In
Section 3 we characterise a class of low-level control goals
and illustrate these by a simple example. The construction
of a discrete abstraction is developed in Section 4. We take
special account for the linear case in Section 5.

2 A two-level hierarchical control architecture

We introduce a mathematical model of a hybrid control ar-
chitecture in which a discrete event supervisor switches be-
tween a finite number of continuous low-level controllers
attached to a continuous plant; see Figure 1. As far as the
switching and event generating mechanisms are concerned,
the suggested scenario is closely related to the framework of
hybrid automata; e.g. [AC+95]. However, in our model we
give account of the hierarchical structure and also require
an explicit notion of inputs and outputs in order to state and
solve a supervisory controller synthesis problem.

We begin by modelling the continuous dynamics for the sit-
uation in which a particular low-level controller is attached
to the continuous plant

ξ̇ (t) = fplt(ξ(t), u(t)) , y(t) = gplt(ξ(t), u(t)) . (1)

We assume that all low-level controllers share one and the
same state variable ζ(t); i.e., they are all padded to be of the
same order and there is no re-initialisation in the process of
switching2. The active low-level controller

ζ̇ (t) = fc(ζ(t), y(t)) , u(t) = gc(ζ(t)) (2)

is selected by the most recent discrete input event c ∈ Win,
and the overall continuous feedback system is represented
by a state space model

ẋ(t) = Fc(x(t)) , (3)

with state variable x(t) = Col[ξ(t), ζ(t)] ∈ � n. We as-
sume Fc to be locally Lipschitz continuous. Hence, for any
given initial condition x(0) = x0 the system (3) exhibits a
unique solution 8c(x0, ·), defined on the maximum inter-
val Tmax(c, x0) ⊆ � +

0 of existence:

8c(x0, ·) : Tmax(c, x0) → � n . (4)

For the following discussion on the generation of output
events let c ∈ Win denote the most recent input event; let t0
denote the time at which c was applied; and let x0 = x(t0)
denote the state of continuous feedback system at time t0.
The continuous feedback system then evolves according to
x(t0 + t) = 8c(x0, t), t ≥ 0. This evolution is meant to
be restricted to the so called mode invariant set Invc ⊆ � n ,
which for the scope of this paper is assumed to be open and
bounded. An output event is triggered when x(t0+t), t ≥ 0,
first leaves Invc, which happens at3

t = t ′(x0, c) � sup{s| 8c(x0, τ) ∈ Invc ∀ 0 ≤ τ < s} . (5)
2Both these assumptions are not essential to our hierarchical architec-

ture and may be dropped at the cost of some extra notation.
3Note that boundedness of Invc and Lipschitz continuity of Fc ensure

that either Tmax(x0, c) = � +
0 or the trajectory leaves Invc .

Equation (5) exhibits two special cases: t ′(x0, c) = ∞ in-
dicates that the state trajectory evolves within Invc for all
future; t ′(x0, c) = 0 corresponds to x0 6∈ Invc. Both special
cases are considered as errors and trigger a distinguished
output event aerr ∈ Wout. It will be the task of the supervi-
sors to prevent aerr by switching low-level controllers only
when the continuous state is within a appropriate mode in-
variant and the trajectory leaves that invariant within a fi-
nite time; i.e., t ′(x0, c) ∈ (0, ∞). In this case, a quantised
version of the continuous output y(t0 + t ′(x0, c)) will be
generated as an output event. The A/D-map used for output
quantisation may depend on c and is modelled by a finite
cover of the output space � p. This in turn induces a fi-
nite cover � n = ∪a∈WoutXc,a that relates continuous states
and output events. Thus, the next output event a may not
be uniquely determined by x0 and c, but is characterised by
a ∈ a′(x0, c), where

x ′(x0, c) � 8c(x0, t ′(x0, c)) , (6)

a′(x0, c) � {α| x ′(x0, c) ∈ Xc,α} , (7)

if t ′(x0, c) ∈ (0, ∞), or else x ′(x0, c) � x0, a′(x0, c) �
{aerr} to indicate an error.

While the internal evolution of the continuous plant under
low-level control is clearly driven by continuous dynamics,
the interface to the supervisor is exclusively based on dis-
crete events: from the perspective of the supervisor4 the
switched continuous feedback loops (as indicated by the
dashed box in Figure 1) can be represented by a single dis-
crete behaviour B ⊆ (Win × Wout)

�
0 , namely the set of all

possible sequences of external events. Given a set of con-
sidered initial states X0 ⊆ � n, we formally define

B � {(ck, ak)k∈
�

0 | ∃ (xk) ∀ k :

x0 ∈ X0, xk+1 = x ′(xk, ck), ak ∈ a′(xk, ck)} . (8)

See [Wi91] for a comprehensive introduction to Willems’
behavioural systems theory. For the problem of supervi-
sory controller synthesis we consider the continuous plant,
the low-level continuous controllers and the A/D-map to be
given. We then ask for a (high-level) discrete supervisor
that restricts the behaviour B according to a given language
inclusion specification; i.e., the supervisor shall prevent the
system to evolve on trajectories that are deemed to be unac-
ceptable. Formally, the behaviour Bcl of the overall hybrid
control system is defined as the intersection of B with the
supervisory controller behaviour Bsup. The language inclu-
sion specification for Bspec requires that:

Bcl � B ∩ Bsup ⊆ Bspec . (9)

For a thorough discussion on how to synthesise Bsup ac-
cording to (9) when B and Bspec are given we refer the

4We only consider DESs as potential supervisors. In particular, the tim-
ing of (traditional) DESs refers to “logic time” k ∈ � 0 induced by count-
ing events. However, if some aspects of real time shall be made available
to the supervisor, a continuous timer can be formally modelled as a part of
the plant, issuing timer events via quantised continuous output.

reader to our earlier work [MR99]: employing slightly mod-
ified versions of DES supervisory control methods (e.g.
[RW87]), our main result is that the hybrid synthesis prob-
lem can be solved via a discrete abstraction; i.e., a finite
automaton which realizes a behaviour Bca ⊇ B. This re-
duces the supervisory controller synthesis problem to the
construction of a discrete abstraction, to which we come
back in Section 4.

3 Low-level control goals

In the absence of further restrictions on the low-level con-
trollers and on the continuous plant, virtually any continu-
ous closed-loop could be assembled and thus it would not
be expected to gain from the hierarchical structure. How-
ever, in practical applications the low-level controllers will
be designed to achieve certain low-level control goals: the
low-level controllers will implement elementary manoeu-
vres that are meaningful w.r.t. the language inclusion spec-
ification which in turn is to be enforced by the supervisor.
While we will not discuss the (rather challenging) question
of how to choose these low-level control goals, we will char-
acterise a relevant class of low-level control goals that al-
low a significant increase of computational efficiency in the
course of the high-level supervisory controller design.

Given a smooth map hc : � n → � m , m < n, we assume
that the low-level controller corresponding to c ∈ Win en-
forces the following continuous closed-loop properties for
every solution x(t) of (3):

lim
t→∞

hc(x(t)) = 0 , (10)

hc(x(0)) = 0 ⇒ hc(x(t)) ≡ 0 . (11)

i.e., the low-level controller stabilises a quantified aspect of
the state trajectories but does not necessarily stabilise the
entire system (3). By the assumptions of both Rk(hc) ≡ m
and the existence of a root hc(x0) = 0, we ensure that

Ec � {ξ | hc(ξ) = 0} ⊆ � n (12)

is an (n − m)-dimensional differentiable manifold and
that the solutions of (3) can be locally decomposed5 in
an m-dimensional component towards Ec and an n − m-
dimensional component parallel to Ec. In order to avoid
a lengthly discussion within a differential geometry frame-
work, we restrict our further considerations to the case
where a diffeomorphism Tc : � n → � n exists that repre-
sents a global coordinate transformation

[

w(t)
z(t)

]

� Tc(x(t)) , (13)

such that z(t) = hc(x(t)). Then (3) can be rewritten as

5By a local decomposition we refer to a family of diffeomorphisms,
each defined on a coordinate neighbourhood, and each performing a coor-
dinate transformation such that the decomposition then can be represented
by two canonical linear projections. In the context of this paper we can re-
strict our considerations to any compact superset of the bounded set Invc .
Hence, we can assume that the family of diffeomorphisms is finite.

ẇ(t) = Gc(w(t), z(t)) , ż(t) = Hc(w(t), z(t)) , (14)

where (10) and (11) transform to limt→∞ z(t) = 0, and
z(t) ≡ 0 whenever z(0) = 0, respectively.

As an example for our class of control goals, consider the
following simplified model of a floating platform with ac-
celerators in both Cartesian position coordinates:

ẇ(t) = z(t) , ż(t) = −α z(t) + u(t) , (15)

where w(t) ∈ � 2 is the position of the platform, z(t) ∈ � 2

is its velocity, u(t) is the actuator input, and α > 0 is
a normalised friction coefficient. Suppose that the high-
level specification Bspec demands the vehicles to travel
through certain partition blocks of � 2 in a prescribed or-
der. A sensible design of the low-level controllers then im-
plements e.g. straight line manoeuvres in the four directions
Win = {up, dn, lft, rgt}, corresponding to the unit vectors
v∗

up, v∗
dn, v∗

lft, v∗
rgh. As low-level controllers we consider a

proportional feedback of the velocity error:

u(t) = (α + β) v∗
c − β z(t) , (16)

for each c ∈ Win. The overall gain of the low-level con-
troller comes out to be α +β. Note that physical limitations
of the actuators and the given operating range translate to a
limit on that gain; i.e., the continuous feedback loops may
not be considered to be arbitrarily fast. See Figure 2 for
a typical trajectory of our example. Along the interval of
time [t1, t2] the platform floats according to c = cup. The
trajectory in the illustration happens to start in an upwards
motion and consequently evolve within the affine subspace
Ec of states with velocity v∗

up. At t2 the system switches
to the low-level controller indexed by c = c′

rgt. Thus, dur-
ing [t2, t3] the velocity is driven towards v∗

rgt, until finally
the trajectory leaves the mode invariant Invc′ at time t3 and
triggers an output event a′ ∈ Wout. Whether or not this tra-
jectory meets the high-level specification Bspec in general
depends not only on c′ and a′ but also on all past and all
future events. Suppose our particular trajectory is meant to
not leave Invc′ via the grey shaded face because that would
generate an event that violates Bspec. It is clear from the

t1

t2

t3

w

z

�
c

�
c′

Invc′

Figure 2: Elementary manoeuvres

picture that in this situation the full dimensional continu-
ous dynamics are still relevant even if in the long term the
derivative of z(t) vanishes.

4 Discrete abstraction of continuous dynamics

A discrete abstraction of the behaviour B is a finite automa-
ton P that realizes a behaviour Bca ⊇ B; i.e., P gener-
ates every external trajectory within B, but there may ex-
ist trajectories of P which are not within B. One strat-
egy for constructing a discrete abstraction of a continuous
flow is to partition the continuous state space by a finite
number of comparatively small cells and then to find a re-
liable approximation on the evolution of those cells; e.g.
[KA+00, AB+00, FMR00, MR00]. The choice of the parti-
tion cells may be based on a careful analysis of the flows 8c,
or one may just use a regular grid. The latter approach in
principle is applicable to a large class of continuous dynam-
ics. However, the number of cells required for a suitably ac-
curate representation depends exponentially on the dimen-
sion of the statespace: using e.g. a regular grid of cells with
a mesh width ρ to discretise an n-dimensional cube with
edges of length r , ρ � r , one ends up with about (r/ρ)n

cells. As every cell needs to be integrated for each input
event c ∈ Win, this approach imposes a stringent limit on
the dimension of the state space. In this section we demon-
strate how to exploit the hierarchical architecture in order to
significantly reduce the number of required cells.

The crucial ingredient of our hierarchical architecture is that
according to the low-level control goals the continuous state
is expected to evolve “most of the time” close to a lower di-
mensional manifold Ec. It is only in the situation just after
switching to another low-level controller that the dynamics
in fact depend on the full n-dimensional model. Note that
we do need to consider this full dimensional motion in the
construction of P in order to achieve the language inclusion
Bca ⊇ B. As we still want to reduce the number of cells,
we restrict the supervisor not to switch low-level controllers
unless their control goal is achieved; i.e., after c ∈ Win has
been applied the state is required to be sufficiently close to
Ec before the next switching of low-level controllers may
take place. In turn, we only need to discretise the lower di-
mensional manifolds plus an extra margin of width ρ > 0 to
cover the fact that the trajectories approach but not necessar-
ily enter Ec. This strategy virtually reduces the dimension
of the state space to n − m and thus promises substantial
gain of computationally efficiency.

For each c ∈ Win let � n = ∪ j∈JZc, j denote a finite cell
decomposition of the full state space. However, the only
cells Zc, j that are relevant are those that intersect both
the mode invariant Invc and the manifold Ec. In order to
achieve a certain accuracy, we ask relevant cells to have
a diameter not more than a target diameter ρ > 0; i.e.,
Diam(Zc, j) � sup{||ξ − ζ || | ξ, ζ ∈ Zc, j } ≤ ρ. As Invc

is bounded and Ec is of dimension n − m, J can be cho-
sen to be finite and the number of required cells is of order

O((1/ρ)n−m). Such a cell decomposition can be based on
mapping a regular � n−m-grid via the diffeomorphism Tc

into Ec and then expanding the images of the � n−m-cells
by a uniform fattening of width γ � ρ. Formally, this γ -
expansion of a cell Zc, j is defined by Bγ (Zc, j) � {ξ | ∃ ζ ∈

Zc, j : ||ξ − ζ || < γ }. Due to the γ -expansion, the relevant
cells will cover not only Invc ∩ Ec but also Bγ (Invc ∩ Ec).
This is required in order to ensure that any trajectory even-
tually evolves within relevant cells only.

As the discrete state space for our abstraction we choose
Q = (C × J) ∪ {qerr} representing the cells Zc, j plus one
distinguished error state. We pick a set of discrete initial
states Q0 that corresponds to a cell cover of the continuous
initial states; e.g. Q0 � {(c, j)| Zc, j ∩ X0 6= ∅}. We then
need to set up a transition relation δ ⊆ Q×(Win×Wout)×Q
such that the induced behaviour

Bca � {(ck, ak)k∈
�

0 | ∃ (qk) ∀ k :

q0 ∈ Q0, (qk, (ck, ak), qk+1) ∈ δ} (17)

is a superset of B. The construction of δ is based a con-
servative approximation on the evolution of individual cells
Zc, j under the flows 8c′ restricted to the mode invariant
Invc′ . This problem of reachability is a fundamental is-
sue in hybrid systems research. Known methods mainly
focus on linear differential equations and polyhedral or el-
lipsoidal sets of states; e.g. [AB+00, FMR00, KV00]. A
technique addressing the nonlinear case is given in [LTS99].
For the scope of this paper, we focus on a conservative es-
timate of reachable states based on integration of cells Zc, j

with a fixed sampling rate 1; see also [MR00]. Techni-
cally, we require an implementation of two operators Rc′,t
and Sc′,1 on sets of states, where Rc′,t(X) ⊇ 8c′(X, t)
over-approximates the set of states reachable at a particular
instance on time t , while Sc′,1(X) ⊇ 8c′(X, [0, 1]) re-
turns an over-approximation of the states reachable within
the sampling interval [0, 1]. We then iterate

X0 � Zc, j , X i+1 � Rc′,1(X i) , (18)

i+ � min{i | X i ∩ Invc′ = ∅} , X̃ i � Sc′,1(X i) , (19)

assuming termination with i+ < ∞. For a more sophisti-
cated version of this iteration and some account on the ques-
tion of finite termination see [MR00]. By construction, the
evolution of Zc, j under 8c′ restricted to Invc′ takes place
within the union ∪i<i+ X̃ i .

Based on this reachset estimate, we define δ to be the set of
all those transitions (q, (c′, a′), q ′) ∈ Q×(Win×Wout)×Q
which fulfil one of the following conditions:

(A1) q = (c, j), q ′ = (c′, j ′) and there exists i < i+ such
that X̃ i ∩ Xc′,a′ 6⊆ Invc′ and X̃ i ∩ Zc′, j ′ 6= ∅;

(A2) q ′ = qerr and Zc, j 6⊆ Invc′ ;
(A3) q ′ = qerr and there exists i < i+ such that X̃ i 6⊆

Bγ (Ec′) and X̃ i ∩ Xc′,a′ 6⊆ Invc′ .
(A4) q = q ′ = qerr.

We comment on the above conditions: (A1) captures the
nominal case that a trajectory hits the boundary ∂Invc′ and
thus triggers the output event a ′. (A2) gives qerr when the
initial cell does not entirely lie within the mode invariant
Invc′ . (A3) identifies the situation in which an output event
is generated before the cell has evolved into the γ -expansion
of Ec′ to be an error. (A4) implements arbitrary events once
the error state has been reached in order to ensure Bca ⊇ B.

The supervisor only switches low-level controllers as an im-
mediate consequence of an output event, and thus (A3) rules
out changes of low-level control before the recent low-level
goal is attained. This is a rather conservative rule, as the
supervisor may receive an output event but in reply just re-
confirm the recent choice of low-level control. Depending
on the specification Bspec it can turn out that one needs a
more sophisticated replacement for (A3), as otherwise the
abstraction becomes too crude. One possibility here is to
extend Q by an additional component representing a binary
“don’t change the low-level controller” flag plus some ref-
erence to the recent iteration X i . Assuming a global upper
bound on the time required for approaching Ec′ , this will not
increase the order of Q.

It is an immediate consequence from our construction that
the induced behaviour Bca is a superset of B and thus a
suitable basis for supervisory controller synthesis.

5 The linear case

In this section we assume both the physical plant and the
low level controllers to be modelled by linear time invariant
differential equations. The continuous feedback system (3)
then evolves according to a linear differential equation

ẋ(t) = Fc(x(t)) = Ac x(t) + bc , (20)

Here, efficient implementations of the approximation oper-
ators Rc′,t and Sc′,1 are available for ellipsoidal and poly-
hedral cells Zc, j ; e.g. [KV00, AB+00].

The considered elementary manoeuvres implemented by the
low-level controllers are characterised by

lim
t→∞

Cc x(t) + dc = 0 for all x(0) , (21)

Cc x(0) + dc = 0 ⇒ Cc x(t) + dc ≡ 0 , (22)

where Cc ∈ � m×n , Rk(Cc) = m, dc ∈ � m . That is,
the continuous state approaches the affine subspace Ec =

{ξ | Cc ξ +dc = 0} ⊆ � n, which itself is invariant under the
flow 8c(· , t) for all t . In order to separately discuss motion
parallel to Ec and motion towards to Ec, we transform state
coordinates by

[

w(t)
z(t)

]

� Tc(x(t)) �
[

C̃c

Cc

]

x(t) +

[

0
dc

]

, (23)

where the rows of C̃c ∈ � (n−m)×n are chosen as a basis of
the null-space Kern(Cc). Note that Tc is bijective by con-
struction. As a consequence of (22) observe ż(t) ≡ 0 for

any trajectory x(t) with z(0) = 0. In particular, this im-
plies ż(0) = 0 whenever z(0) = 0 and for all w(0). Thus,
equation (20) can be rewritten in the form

ẇ(t) = Ac,11 w(t) + Ac,12 z(t) + bc,1 , (24)

ż(t) = Ac,22 z(t) , (25)

where Ac,11 ∈ � (n−m)×(n−m), Ac,12 ∈ � (n−m)×m , Ac,22 ∈

� m×m , bc,1 ∈ � n−m and Ac,22 is exponential stable, i.e.,
σ(Ac,22) ∈ � −.

Equation (24) suggets that the reduced model

˙̃w(t) = Ac,11 w̃(t) + bc,1 , (26)

with w̃(t) ∈ � n−m , describes the long time behaviour of
(20). Thus, the reduced model promises a computational
benefit for the approximate integration of cells of states.
However, while any solution x(t) approaches Ec, the pro-
jection w(t) itself is in general not a solution of the reduced
model (26). We will show by construction that for every
x(t) there exists an initial condition w̃(0) such that

lim
t→∞

||w(t) − w̃(t)|| = 0 . (27)

Observe that the error e(t) = w(t) − w̃(t) is a solution of

ė(t) = Ac,11 e(t) + Ac,12 z(t) . (28)

Given x(t), we need to show that there exists an initial con-
dition w̃(0), such that the column vector Col[e(0), z(0)] ∈

� n lies in the (exponential) stable subspace Es ⊆ � n of

Aerr =

[

Ac,11 Ac,12
0 Ac,22

]

. (29)

Note that σ(Aerr) = σ(Ac,11) ∪ σ(Ac,22), where algebraic
multiplicities of common eigenvalues add up. We now con-
struct a basis of � n consisting of generalised eigenvectors
si , 1 ≤ i ≤ n, of Aerr. Pick any unstable λ ∈ σ(Aerr).
As Ac,22 is stable, we have λ 6∈ σ(Ac,22) and thus λ ∈

σ(Ac,11) with the same algebraic multiplicity as it is w.r.t.
Aerr. Observe that v ∈ Kern((λ I − Ac,11)

j) is equiva-
lent to Col[v, 0] ∈ Kern((λ I − Aerr)

j) for all j ∈ � ,
v ∈ � n−m . Thus, s1, s2, . . . sk can be chosen to have
the lower m entries zero, where k ≤ n − m is the sum of
the multiplicities of unstable eigenvalues in σ(Aerr). The
remaining basis vectors S = [sk+1, sk+2, . . . sn] then all
refer to stable eigenvalues, and thus span the stable sub-
space; i.e., Es = Im(S). As s1, s2, . . . sn span the en-
tire � n, and as the first k vectors have their lower m
entries set to zero, we conclude Im([0, Im] S) = � m .
This implies z(0) = [0, Im] S ([0, Im] S)# z(0), where
S# denotes the Moore-Penrose inverse of S. By e(0) �
[In−m, 0] S ([0, Im] S)# z(0) we give evidence of an initial
condition w̃(0) = w(0) − e(0) for which the error vanishes
in the limit t → ∞.

Starting the integration of the full model (20) at an initial
state x(0), we want to identify a time t such that the fu-
ture evolution x(τ), τ ≥ t , can be approximated by in-
tegrating the reduced model. Thus, we are asking for an

upper bound on ||x(τ) − x̃(τ))|| for all t ≥ τ , where
x̃(τ) � T −1

c (Col[In−m, 0] w̃(τ)) and the initial value w̃(0)

is chosen according to the above considerations. Then, the
error model only needs to be examined in its stable subspace
and we transform to local coordinates of Es :

r(t) = S#
[

e(t)
z(t)

]

, ṙ(t) = S# Aerr S r(t) . (30)

As S# AerrS is stable, there exists a positive definite matrix
P ∈ � (n−k)×(n−k) , such that V (r) = r ᵀ Pr is a Lyapunov
function of (30). In particular V (r(t)) is strictly monotone
decreasing. Therefore,

||x(τ) − x̃(τ)|| ≤ ||

[

C̃c

Cc

]−1

S P− 1
2 || V (r(t))

1
2 , (31)

for all t ≥ τ . Now focus attention on a particular step
i < i+ in the context of our iterative integration (18)-
(19). Note that the choice of w̃(0) depends linearly on x(0).
Hence x(0) is mapped by an affine map to r(i1). Assum-
ing polyhedral (or ellipsoidal) cells, X i can be transformed
in “r -coordinates”. The right hand side of (31) is convex
and, in particular, maximisation over a polyhedral can be
performed by evaluation at all vertices. If this maximum is
below our target accuracy ρ we can turn to integrating the
reduced model rather than the full model.

Conclusions

Hybrid control systems are frequently motivated by a high-
level supervisory controller that switches between a finite
number of continuous low-level controllers, all acting on
the same physical plant. In this paper we propose how to ex-
ploit the hierarchical structure when formulating a discrete
abstraction of the involved continuous dynamics. Using a
grid partitioning of the n-dimensional state space, the num-
ber of discrete states in the abstraction depends exponen-
tially on n. We focus on a general class of low-level control
goals that is characterised by an m-dimensional stable com-
ponent of the state variable. This enables us to effectively
reduce the dimension of the state space to n − m. Compu-
tational advantage is then gained for two reasons: first, the
lower dimensional grid consists of significantly less cells;
second, the long term continuous dynamics can be approx-
imated by a reduced model. This second aspect requires
a detailed analysis of the continuous feedback loops, and
we give such an analysis for the situation of linear time in-
variant differential equations. Our method is reliable in the
sense that it is still guaranteed that the original system will
only evolve on trajectories that are generated by the abstrac-
tion. This condition is crucial when employing the discrete
abstraction as a basis for supervisory controller synthesis.

We have used our method for the design of a supervisory
controller that drives the floating platform (15), (16) in a cir-
cular motion through four overlapping regions in � 2. The
number of cells in the discrete approximation could be re-
duced from 18 × 106 down to 35 × 103, with the obvious

gain of computational performance. A detailed exposition
of that case study must be omitted due to page limitations.
Ongoing work addresses the start-up procedure of a distil-
lation column, where the 42 dimensional state space model
exhibits trajectories that –most of the time– evolve on a 3
dimensional manifold.

References
[AC+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical Computer
Science, vol. 138, pp. 3–34, 1995.
[AB+00] E. Asarin, O. Bournez, T. Dang, O. Maler, A. Pnueli.
Effective synthesis of switching controllers for linear systems.
Proceedings of the IEEE, vol. 88:7, pp. 1011–1025, 2000.
[CW98] P.E. Caines, Y.J. Wei. Hierarchical hybrid control sys-
tems: a lattice theoretic formulation. IEEE Transactions on Auto-
matic Control, vol. 43:4, pp. 501–508, 1998.
[FDF99] E. Frazzoli, M.A. Dahleh, E. Feron. A hybrid control ar-
chitecture for aggressive maneuvering of autonomous helicopters.
Proceedings of the 38th IEEE Conference on Decision and Control
CDC99, pp. 2471-2476, Phoenix, 1999.
[FMR00] D. Franke, T. Moor, J. Raisch. Discrete supervisory
control of switched linear systems. at-Automatisierungstechnik,
pp. 461–467, vol. 48:9, 2000.
[KA+00] X. Koutsoukos, P.J. Antsaklis, J.A. Stiver, M.D. Lem-
mon. Supervisory control of hybrid systems. Proceedings of the
IEEE, vol. 88:7, pp. 1026–1049, 2000.
[KV00] A.B. Kurzhanski, P. Varaiya. Ellipsoidal techniques for
reachability analysis. In N. Lynch, B. Krogh (eds) HSCC’00,
LNCS 1790, pp. 203–213, Springer, 2000.
[LTS99] J. Lygeros, C. Tomlin, S. Sastry. Controllers for Reach-
ability Specifications for Hybrid Systems. Automatica, vol. 35,
pp. 349–370, 1999.
[MR00] T. Moor, J. Raisch. Approximation of multiple switched
flow systems for the purpose of control synthesis. Proceedings
of the 39th IEEE Conference on Decision and Control CDC00,
pp. 3604–3609, Sydney, 2000.
[MR99] T. Moor, J. Raisch. Supervisory control of hybrid sys-
tems within a behavioural framework, System and Control Letters,
vol. 38:3, pp. 157–166, 1999.
[PLS00] G.J. Pappas, G. Lafferriere, S. Sastry. Hierarchically
consistent control systems. IEEE Transactions on Automatic Con-
trol, vol. 45:6, pp. 1144-1160, 2000.
[RO98] J. Raisch, S.D. O’Young. Discrete approximation and su-
pervisory control of continuous systems. IEEE Transactions on
Automatic Control, vol. 43:4, pp. 569–573, 1998.
[RIM00] J. Raisch, A. Itigin, T. Moor. Hierarchical control of hy-
brid systems. Proc. 4th International Conference on Automation
of Mixed Processes: Dynamic Hybrid Systems, pp. 67–72, Dort-
mund, Germany, Shaker Verlag 2000.
[RW87] P.J. Ramadge, W.M. Wonham. Modular Feedback Logic
for Discrete Event Systems. SIAM Journal on Control and Opti-
mization, vol. 25, pp. 1202–1218, 1987.
[Wi91] J.C. Willems. Paradigms and puzzles in the theory of
dynamic systems. IEEE Transactions on Automatic Control,
vol. 36:3, pp. 258–294, 1991.
[WW96] K.C. Wong, W.M. Wonham. Hierarchical control of
discrete-event systems. Discrete Event Dynamic Systems, vol. 6,
pp. 241–306,1996.

