
Robust Hybrid Control from a Behavioural Perspective

T. Moor ∗, J.M. Davoren †, B.D.O. Anderson∗

Abstract

This paper investigates the synthesis of discrete supervi-
sors for hybrid systems where the control objective is to
enforce a language inclusion specification in the presence
of plant uncertainty. The discussion is set within Willems’
behavioural system theory, where we find a relationship be-
tween robustness of closed-loop performance and earlier re-
sults on abstraction based synthesis. From this relationship,
we develop our main result: a method for the synthesis of
robust supervisory controllers. Note that virtually any en-
gineering system must possess some amount of robustness
in order to fulfil even minimal reliability requirements. This
commonly accepted fact is of a particular importance for hy-
brid control systems, since the motivating application areas
are safety-critical and high-confidence systems as air traffic
control or medical instrumentation.

Keywords: hybrid systems, behavioural systems theory, ro-
bust control, supervisory control.

1 Introduction

Hybrid control systems are mathematical models of hetero-
geneous systems consisting of digital components interact-
ing in real-time with continuous processes. In particular, a
variety of controller design problems for such systems has
received extensive attention e.g. [2, 4, 7, 8, 10, 11, 14]. In
this paper, we investigate the synthesis of a discrete event
controller for continuous time and continuous valued con-
trol systems; see Fig. 1. The conversion between continuous
signals and discrete events is performed in a similar way as
it occurs within the widely accepted hybrid automata model
[1]. As in [4, 11, 14], we assume that the actuator (D/A-
map) and the sensor (A/D-map) are given, and our synthe-
sis problem is the construction of a discrete event controller
that enforces a language inclusion specification.

In [11, 13], this synthesis problem is discussed within
J.C. Willems’ behavioural systems theory, and it is shown
that a solution can be obtained in two steps: (i) construct
a plant abstraction that can be realised by a finite automa-
ton; (ii) apply slightly modified tools from P.J. Ramagde and
W.M. Wonham’s DES supervisory control theory [15, 16].

∗Research School of Information Sciences and Engineer-
ing, Australian National University, Canberra, Australia, email:
{thomas.moor | brian.anderson}@anu.edu.au. Research partially sup-
ported by the Australian Research Council, Project ID: DP0208553.

†Department of Electrical and Electronic Engineering, University of
Melbourne, Australia, email: davoren@unimelb.edu.au

(finite automaton, DES)

(ODE)

u(t) ∈

� m y(t) ∈

� p

discrete supervisor

continuous process

actuator sensor

c(k) ∈ Win a(k) ∈ Wout

continuous dynamics with discrete external signals

Figure 1: Hybrid control configuration

In this paper, we extend the general methodology of [11, 13]
in order to synthesise supervisors that are robust w.r.t. a
quantified parameter uncertainty in the hybrid plant model.
It is commonly accepted that every engineering system must
be robust in order to provide a vital level of reliability, and
this requirement is addressed by e.g. virtually all classi-
cal continuous feedback designs. However, little is known
about the robust design of hybrid systems e.g. [10, 5]. In
particular, hybrid closed-loop systems that have been de-
signed to fulfil a language inclusion specification by the
methods in e.g. [4, 7, 11, 14], in general, fail to possess any
robustness margin: even under the smallest perturbations of
any plant component, the closed loop may cease to fulfil the
performance criteria it has been designed for. Our contribu-
tion addresses this problem for a broad class of parameter
uncertainties.

The paper is organised as follows. In Section 2, we recall
definitions and facts from Willems’ behavioural framework,
including links to DES theory. A detailed model of the hy-
brid systems under consideration is given in Section 3. In
Section 4, we present an adapted version of the core results
from [11, 13]. This allows for an accessible treatment of a
general class of robust hybrid control problems in Section 5,
where we basically allow all plant components to depend on
an uncertain parameter with known range.

2 Behaviours and states machines

For the readers convenience, we collect some basic defini-
tions from Willems’ behavioural systems theory; a compre-
hensive introduction is given in [17, 18].

Definition 2.1. (See [18], Def. II.1) A dynamical system is
a triple 6 = (T, W, B), with T ⊆ � the time axis, W the

signal space, and B ⊆ W T the behaviour. 1
�

The behaviour is viewed as the set of all trajectories which
are compatible with the phenomena modelled by the sys-
tem: trajectories w 6∈ B cannot occur. In this paper, we
focus attention on discrete time behaviours with T = � 0

2.
Note that the discrete time case is not restricted to sampling
with a constant sampling period (clock time), but also ac-
counts for scenarios in which a discrete time axis is derived
from counting events (logic time). In the latter case, a be-
haviour models a phenomenon very much in the way formal
languages are used in DES theory; e.g. [3]. This link is fur-
ther elaborated by the following definition of state machine
realisations of discrete time behaviours.

Definition 2.2. A state machine is a tuple P = (X, W, δ,
X0) with W the external signal space, X the state space,
X0 the set of initial conditions, and with δ ⊆ X × W × X
the next state relation. If |W | ∈ � and |X | ∈ � (both sets
are finite), P is said to be a finite automaton. The external
behaviour B induced by P is defined as

B � {w ∈ W
�

0 | ∃ x ∈ X
�

0 : ∀ k ∈ � 0 :

(x(k), w(k), x(k + 1)) ∈ δ and x(0) ∈ X0} . (1)

Conversely, a state machine P ′ with induced external be-
haviour B

′ is called a realisation of B
′. �

We recall some basic terminology for state machines:

Definition 2.3. Consider state machines Pa = (A, W, α,
A0) and Pb = (B, W, β, B0). A state a′ ∈ A is reachable
if there exists a state a ∈ A0 and a sequence of transitions
(elements in the next state relation) from α connecting a
with a′. The state machine Pa is reachable if every state
a′ ∈ A is reachable. The state machine Pa is nonblocking, if
for every reachable state a ∈ A there exists ω ∈ W and a ′ ∈

A such that (a, ω, a′) ∈ α. The parallel composition of Pa
and Pb is defined by Pa ‖ Pb � (A × B, W, λ, A0 × B0),
where ((a, b), ω, (a′, b′)) ∈ λ if and only if (a, ω, a′) ∈

α and (b, ω, b′) ∈ β. The state machine Pa is pastinduced
if |A0| = 1 and if for all reachable a ∈ A and all ω ∈ W ,
(a, ω, a′) ∈ δ and (a, ω, a′′) ∈ δ implies a′ = a′′. For
W = Win × Wout, the state machine Pa is an I/S/- machine,
if for every reachable a ∈ A and every µ ∈ Win, there exist
ν ∈ Wout and a′ ∈ A such that (a, (µ, ν), a′) ∈ α. �

Reachability, the nonblocking property and the parallel
composition are standard definitions from DES theory; e.g.
[3]. The pastinduced property is a particular form of deter-
minism, as it requires that at any instance of time the current
state is uniquely determined by the past of the external tra-
jectory; see [17] for the corresponding definition in terms
of full (state) behaviours. I/S/- machines conform with the
traditional notion of inputs and outputs on the product space
W = Win×Wout, as e.g. in Moore automata or discrete-time
linear continuous systems. As in these examples, the hybrid

1The set of maps from T to W is denoted W T � {w | w : T → W }.
2 � denotes the positive integers (without zero); let �

0
� � ∪ {0}.

systems considered in this paper evolve on a state trajectory
that is uniquely defined by the initial condition and the se-
quence of applied input events. However, our notion of I/S/-
machines does not require that the input drives the state in
unique way. This is utilised by the plant abstractions con-
sidered in Section 5, which, in general, for a given state and
input pair, fail to produce a unique successor state. Note that
this is allowed by pastinducedness, and this is precisely why
we need to distinguish pastinducedness form other notions
of determinism.

It is easy to see that any discrete time behaviour B can be
realised as a state machine (e.g. use X = B × � 0, X0 =

B×{0}, δ � {((w, k), w(k), (w, k +1))| k ∈ � 0, w ∈ B}

for a constructive proof). There is a natural interest in how
properties of state machines relate to properties defined in
terms of behaviours, and we shall recall some definitions
and facts regarding I/S/- machines and pastinducedness.

Definition 2.4. (See [18], Def. II.4) A behaviour B ⊆

W
�

0 is complete if for all w ∈ W
�

0 the following holds: 3

w ∈ B ⇐⇒ ∀ k ∈ � 0 : w
∣

∣

[0,k] ∈ B
∣

∣

[0,k] . (2)

�

A behaviour B ⊆ W
�

0 is complete if and only if it can
be realised by a pastinduced state machine; e.g. [9], Theo-
rem 2.2.9. Note that any finite state machine can be trans-
formed to a pastinduced finite state machine without affect-
ing the external behaviour. Hence, a behaviour induced by a
finite state machine is complete. As another example, finite-
dimensional discrete-time linear systems are seen to induce
a complete external behaviour. However, not all behaviours
are complete; e.g. B = {w ∈ �

�
0 | limk→∞ w(k) = 0}.

Definition 2.5. (see [18], Defs. VIII.1, VIII.4) A behaviour
B ⊆ W

�
0 over the signal space W = Win × Wout is an

I/- behaviour if: 4 (i) the input is free, i.e. Pin B = U
�

0 ;
and (ii) the output does not anticipate the input, i.e. for all
k ∈ � 0 and w̃, ŵ ∈ B, the following implication holds:

Pinw̃
∣

∣

[0,k] = Pinŵ
∣

∣

[0,k] H⇒

∃ w ∈ B : Poutw
∣

∣

[0,k] = Poutw̃
∣

∣

[0,k], Pinw = Pinŵ . (3)

�

Any behaviour that is induced by an I/S/- machine is an I/-
behaviour; any pastinduced state machine that realises an I/-
behaviour is an I/S/- machine; e.g. [11], Prop. 24.

3 A hybrid control configuration

We provide a detailed model for hybrid plants that consist
of a continuous process, an actuator and a sensor; i.e. the
dashed box in Fig. 1. While the hybrid closed-loop system

3The restriction operator (·)|[k1,k2] : W � 0 → W k2−k1+1 is defined
by w|[k1,k2] = (w(k1), w(kk+1), . . . w(k2)) for all k1, k2 ∈ �

0, k1 ≤

k2, and all w : �
0 → W .

4By Pin and Pout we denote the natural projections from W = Win ×

Wout to the input and output component, respectively; i.e. Pinw = c and

Poutw = a for all w = (c, a), c ∈ W � 0
in , a ∈ W � 0

out .

could be modelled within the widely accepted hybrid au-
tomata framework [1], a more explicit notion of inputs and
outputs is required for our discussion of controller synthe-
sis. We therefore construct an I/S/- machine that realises the
external plant behaviour.

Continuous process. We model the continuous dynamics
by a time invariant control system with input u(t), state x(t)
and output y(t):

ẋ(t) = f (x(t), u(t)) , (4)

y(t) = g(x(t), u(t)) , (5)

where f : � n × � m → � n, g : � n × � m → � p,
u : � +

0 → � m , x : � +
0 → � n , y : � +

0 → � p. Let
U ⊆ {u| u : � +

0 → � m} denote a set of globally admis-
sible inputs such that for all u ∈ U and all initial conditions
x0 ∈ � n the ODE (4) exhibits a unique solution x(t) on the
entire time axis with x(0) = x0. We denote this solution
ϕ(x0, u, ·) : � +

0 → � n. Note that all relevant continuous
dynamics are to be summarised by the ODE (4) and this in
technical applications typically includes the one or the other
low-level continuous controllers e.g. output tracking. Here,
unique existence of solutions appears a modest assumption.

Actuator. The actuator translates discrete control events
from the finite control alphabet Win to continuous input sig-
nals. We think of a control event as activating a particular
elementary manoeuvre that is then executed by the contin-
uous dynamics, perhaps supported by a suitable low-level
continuous controller. If e.g. for a physical system the actu-
ator exhibits continuous dynamics, these should be incorpo-
rated in (4). Here, the actuator is formalised by a D/A-map
α : Win → U . Let c : � 0 → Win denote a sequence of
control events where the k-th event is applied at continuous
time tk ∈ � +

0 , tk+1 > tk , t0 = 0. Then the D/A-map trans-
forms this timed sequence of input events to the input signal
u with u(t) = [α(c(k))](t − tk) for all t ∈ [tk, tk+1) and all
k ∈ � 0; i.e. the actuator interprets continuous time relative
to the most recent discrete input event. Given a continuous
initial condition x(0) = x0 ∈ � n , the continuous system
then evolves on the state trajectory x : [0, supk tk) → � n ,
x(t) = ϕ(x(tk), α(c(k)), t − tk) for t ∈ [tk, tk+1).

Sensor. The task of the sensor is to generate discrete out-
put events from the continuous output trajectory y. This is
modelled by an A/D-map β : � p → Wout, where Wout is
the finite alphabet of measurement events. With each mea-
surement event a ∈ Wout we associate the region Ya �
β−1(a) � {ζ ∈ � p| a = β(ζ)} in the continuous output
space. A measurement event is generated when the out-
put signal exits a restricted domain Inv ⊆ � p of evolution,
which for historical reasons is referred to as the mode invari-
ant. In general, the mode invariant may depend on the most
recent control event. However, in our setting the continuous
output depends on the continuous input, and we may with-
out loss of generality use one common invariant Inv ⊆ � p

for all control events. We assume that Inv ⊆ � p is open
and that g is continuous. For any given initial condition

x0 ∈ � n and any input signal u ∈ U , the time that elapses
until a measurement event is triggered is defined by

t+(x0, u) �
sup{t| ∀ τ ∈ [0, t) : g(ϕ(x0, u, τ), u(τ))) ∈ Inv} . (6)

Equation (6) exhibits two special cases: t+(x0, u) = ∞ in-
dicates that the continuous output evolves within Inv for all
future; t+(x0, u) = 0 corresponds to g(x0, u(0))) 6∈ Inv.
Both special cases are considered as errors and trigger a
distinguished output event aerr ∈ Wout. 5 In the nominal
case t+(x0, u) ∈ (0, ∞), a quantised version of the con-
tinuous output y(t0 + t+(x0, u)) will be generated as an
output event. This mechanism of event generation can be
conveniently summarised by two maps F : � n × U → � n

and G : � n × U → Wout, where

F(x0, u) � ϕ(x0, u, t+(x0, u)) , (7)

G(x0, u) � β(g(F(x0, u), u(t+(x0, u)))) . (8)

for t+(x0, u) ∈ (0, ∞) and

F(x0, u) � x0 , G(x0, u) � aerr , (9)

for t+(x0, u) ∈ {0, ∞}.

External plant behaviour. The components listed so far
constitute continuous dynamics over continuous time with a
discrete event interface via measurement and control events.
Note that in our configuration Fig. 1 we assume that a con-
trol event can only occur as an immediate reaction to a
measurement event. Therefore the continuous input signal
u ∈ U remains the same between successive measurement
events. The external plant behaviour Bp ⊆ W

�
0 , W =

Win × Wout, is defined as the set of event sequences that can
occur according to the detailed model developed above. For
a realisation of Bp by a state machine P = (X, W, δ, X0),
we let X � X0 � � n , and (ξ, (µ, ν), ξ ′) ∈ δ if and only
if both ξ ′ = F(ξ, α(µ)) and ν = G(ξ, α(µ)). It is readily
observed that P is an I/S/- machine and, hence, Bp is an
I/- behaviour. Note however that, in general, Bp fails to be
complete. Hence, a pastinduced realisation of Bp may fail
to exist.

4 Supervisory controller synthesis

Adapting the concepts of Ramadge and Wonham’s DES su-
pervisory control theory [15, 16], the task of a supervisor is
to restrict a plant behaviour Bp ⊆ W

�
0 so that the closed

loop is guaranteed to only evolve on acceptable signals.
This specification can be formally represented by the set of
acceptable external signals, denoted Bspec ⊆ W

�
0 . As in-

dicated in Fig. 1, we aim for a finite automaton realisation
of a supervisor. To this end, however, we can represent the
supervisor by its induced behaviour Bsup. The closed-loop
behaviour is defined as the intersection Bcl = Bp ∩ Bsup,

5It will be the task of the supervisors to prevent aerr by applying control
events c ∈ Win for which t+(x0, α(c)) ∈ (0,∞). The device of the error
event aerr is crucial to formalise this control objective. However, the plant
behaviour for after the occurrence of aerr can be padded arbitrarily.

and Bsup is said to enforce the specification Bspec if the in-
clusion Bcl ⊆ Bspec is satisfied. However, two conditions
apply for the interconnection of a supervisor with a plant
and we shall state and motivate these admissibility criteria
in terms of behaviours.

The first admissibility criterion addresses the requirement
that the two systems must not “get stuck” temporally. That
is, if the two behaviours can agree on a common trajectory
up to time k, then there should also be some common future
evolution on the entire discrete time axis.

Definition 4.1. (See [11]) Two behaviours Bp ⊆ W
�

0 and
Bsup ⊆ W

�
0 are said to be nonconflicting if Bp|[0,k] ∩

Bsup|[0,k] = (Bp ∩ Bsup)|[0,k] for all k ∈ � 0. �

A similar notion of nonconflictingness can be found for for-
mal languages; e.g. [3]. Two pastinduced state machines
induce nonconflicting behaviours if and only if their paral-
lel composition is nonblocking. If the parallel composition
of two state machines is nonblocking, then the induced be-
haviours are nonconflicting. In general, the converse impli-
cation does not hold.

Our second condition on behavioural interconnection
specifically addresses I/- behaviours: the supervisor may
enable or disable certain plant input events at any time but
no restrictions on the plant outputs are allowed.

Definition 4.2. 6 A behaviour Bsup ⊆ W
�

0 , W =

Win × Wout, is generically implementable if k ∈ � 0,
w|[0,k] ∈ Bsup|[0,k], w̃|[0,k] ∈ W k+1, w̃|[0,k] ≈y w|[0,k]
implies w̃|[0,k] ∈ Bsup|[0,k]. �

Our notion of generic implementability differs slightly from
implementability w.r.t. a particular plant as defined in [11].
This adjustment leads to admissibility criteria that are inde-
pendent of particular plant dynamics. This becomes crucial
for the synthesis of robust supervisors, where one considers
a parametrised set of plants; see Section 5. Our supervisory
control problem is defined as follows: 7

Definition 4.3. (See [11], Def. 16; also [12]) Given a plant
Bp ⊆ W

�
0 , W = Win × Wout, and a specification Bspec ⊆

W
�

0 , the pair (Bp, Bspec) is a supervisory control prob-
lem. A supervisor Bsup ⊆ W

�
0 is admissible to the plant

Bp, if Bp and Bsup are nonconflicting and Bsup is generi-
cally implementable. A supervisor Bsup ⊆ W

�
0 enforces

the specification Bspec ⊆ W
�

0 if Bcl � Bp ∩ Bsup ⊆

Bspec. A supervisor Bsup that is admissible to Bp and that
enforces the Bspec is said to be a solution of (Bp, Bspec). A
solution Bsup is nontrivial if it imposes a nontrivial closed
loop behaviour Bcl � Bp ∩ Bsup 6= ∅. �

6We use w̃|[0,k] ≈y w|[0,k] as an abbreviation for the two restricted
trajectories to be identical up to the last output event, i.e. Pinw̃|[0,k] =
Pinw|[0,k] and Poutw̃|[0,k) = PoutYw|[0,k) .

7For a single fixed plant behaviour, it can be shown that the two alter-
native notions of implementability lead to precisely the same closed-loop
behaviours. In this sense, the supervisory control problem in Definition 4.3
is equivalent to that in [11].

Observe that Bsup = ∅ is a trivial solution to any super-
visory control problem. Moreover, Bsup = ∅ is the only
trivial solution:

Proposition 4.4. (See [12], Prop. 2.6) Let Bsup ⊆ W
�

0

be admissible w.r.t. an I/- behaviour Bp ⊆ W
�

0 , W =

Win × Wout. If Bsup 6= ∅, then Bp ∩ Bsup 6= ∅. �

Very much in the spirit of [15, 16], the following theorem
uses a set-theoretic lattice argument to establish the unique
existence of a least restrictive supervisor.

Theorem 4.5. (See [12], Thm. 2.7) Let (Bp, Bspec) be a
supervisory control problem. The set of all solutions of
(Bp, Bspec) is a complete upper semi-lattice with the join
operator “∪” and the partial order “⊆”. The supremal el-
ement B

↑
sup of that lattice is referred to as least restrictive

solution of (Bp, Bspec). �

The least restrictive supervisor B
↑
sup contains all other solu-

tions Bsup of (Bp, Bspec); i.e. Bsup ⊆ B
↑
sup. In particular,

B
↑
sup is a nontrivial solution if and only if a nontrivial so-

lution exists. Another aspect of practical relevance is that,
as we now show, B

↑
sup is complete whenever Bspec is com-

plete. The latter can be ensured by requiring that Bspec is
realised by a finite automaton, and this assumption is very
common in applications. Note that Proposition 4.6 does not
require the plant Bp to be complete.

Proposition 4.6. (See [12], Prop. 3.4) Let Bp, Bspec ⊆

W
�

0 . If Bspec ⊆ W
�

0 is complete, then the least re-
strictive solution B

↑
sup of the supervisory control problem

(Bp, Bspec) is also complete. �

It can be shown that the parallel composition of any I/S/-
machine with any pastinduced realisation of a generically
implementable supervisor is nonblocking. The existence of
such a pastinduced realisation can be ensured by Proposi-
tion 4.6. Obviously, a nonblocking closed loop is highly de-
sirable for engineering applications and it justifies the gen-
eral layout of our supervisory control problem.

5 Abstraction based synthesis and robust control

We develop a natural link between abstraction based con-
troller synthesis and robust control, and extend it to investi-
gate robust supervisory controller synthesis. While the lit-
erature gives some account of robustness of hybrid closed-
loop systems e.g. [6], it is only recently that design pro-
cedures for robust hybrid control have been proposed e.g.
[10, 5]. While our main target is the hybrid control configu-
ration from Section 3, but our reasoning applies to arbitrary
behaviours, including those that are realised by finite au-
tomata.

If both Bp and Bspec are realised by pastinduced finite au-
tomata, a realisation of the least restrictive solution B

↑
sup

to the problem (Bp, Bspec) can be computed with a slight

modification of DES tools. However, since hybrid plant be-
haviours Bp almost never have a finite realisation, we in-
stead work with an approximation Bca that is realised by
a finite automaton. We say Bca is an abstraction of Bp if
Bp ⊆ Bca. Under this condition, we can guarantee that so-
lutions for Bca carry over to Bp. To prove this claim, we
first show that a complete supervisor that is generically im-
plementable is also admissible to any plant that is realisable
by an I/S/- machine.

Lemma 5.1. Let Bsup ⊆ W
�

0 , W = Win × Wout, be com-
plete and generically implementable. If a plant Bp ⊆ W

�
0

is realisable by an I/S/- machine then Bp and Bsup are non-
conflicting.

Proof. Let P = (X, Win × Wout, δ, X0) be an I/S/-
machine that realises Bp. Pick any k ∈ � 0, w|[0,k] ∈

Bp|[0,k] ∩ Bsup|[0,k]. Without loss of generality we may as-
sume w ∈ Bp. Pick x ∈ X

�
0 such that (x(κ), w(κ), x(κ+

1)) ∈ δ for all κ ∈ � 0 and x(0) ∈ X0. Pick w̃ ∈ Bsup
such that w̃|[0,k] = w|[0,k]. Let µ � Pinw̃(k + 1). Since
P is an I/S/- machine, there exists ξ ′ ∈ X and ν ∈ Y
such that (x(k), (µ, ν), ξ ′) ∈ δ. In consequence, we can
construct a trajectory x̂ ∈ X

�
0 , ŵ ∈ W

�
0 , such that

(x̂(κ), ŵ(κ), x̂(κ + 1)) ∈ δ for all κ ∈ � 0 and x̂ |[0,k] =

x |[0,k], ŵ|[0,k+1] ≈y w̃|[0,k+1]. We use generic imple-
mentability of Bsup to observe that ŵ|[0,k+1] ∈ Bp|[0,k+1] ∩

Bsup|[0,k+1]. Thus our construction can be carried out iter-
atively, and thereby constitutes a sequence of trajectories
(wκ , xκ) ∈ (W × X)

�
0 , κ ∈ � 0, with (wκ , xκ)|[0,k+κ] =

(wκ+1, xκ+1)|[0,k+κ]. This implies that, for each j ∈ � 0,
the sequences (wκ(j))κ∈

�
0 and (xκ(j))κ∈

�
0 converge as

κ → ∞. Thus we obtain limit trajectories w∞ ∈ W
�

0 and
x∞ ∈ X

�
0 . Observe that w∞|[0,κ] ∈ Bsup|[0,κ] for all κ ∈

� 0, and, by completeness of Bsup, we obtain w∞ ∈ Bsup.
Similarly, observe that (x∞(κ), w∞(κ), x∞(κ + 1)) ∈ δ

for all κ , and, hence, w∞ ∈ Bp. The last two observations
imply w|[0,k] ∈ (Bp ∩ Bsup)|[0,k]. �

The above lemma leads to our central theorem on abstrac-
tion based supervisory controller synthesis:

Theorem 5.2. Let Bca ⊆ W
�

0 be an abstraction of a plant
Bp ⊆ Bca and let Bsup be a complete and nontrivial
solution to the supervisory control problem (Bca, Bspec),
Bspec ⊆ W

�
0 . If Bp is realisable in I/S/- plant form, then

Bsup is a nontrivial solution of (Bp, Bspec).

Proof. Generic implementability does not depend on the
particular plant, and, by Lemma 5.1, we obtain that Bsup is
admissible w.r.t. Bp. Clearly, Bsup enforces the specifica-
tion for Bca, and, hence, Bsup solves (Bp, Bspec). Non-
triviality is a consequence of Prop. 4.4. �

This contrasts with the basic DES setting [15, 16], where
the signal space is a union of controllable and uncontrol-
lable events, and a controllable sublanguage of an abstrac-
tion may very well fail to be a controllable sublanguage
of the actual plant. Theorem 5.2 exploits the input-output

structure of our framework and thereby reduces the problem
of hybrid controller synthesis to the construction of a plant
abstraction that can be realised by a finite automaton. The
latter problem has been discussed from various perspectives
e.g. [7, 4, 14]. In [11, 13] so called l-complete approxima-
tions Bl , l ∈ � , are proposed as a particular suitable class
of abstractions: (i) accuracy is monotone in the parameter
l ∈ � , i.e. Bp ⊆ Bl+1 ⊆ Bl ; and (ii) a pastinduced finite
automaton that realises Bl can be computed from the finite
set B|[0,l], provided that |W | ∈ � .

Reading Theorem 5.2 from a different point of view, it re-
lates to robust control in a broad sense: the theorem states
a sufficient condition under which a controller achieves a
control objective not only for one particular plant, but for a
family of plants. Further elaboration of this line of thought
will enable us to give a not only sufficient but also necessary
condition. As a first step, we formally define a problem of
robust supervisory control.

Definition 5.3. Let (Bθ)θ∈2 denote a family of behaviours
Bθ ⊆ W

�
0 , indexed by the uncertain parameter θ ∈

2. Given a specification Bspec ⊆ W
�

0 , the pair
((Bθ)θ∈2, Bspec) is a supervisory control problem under
parameter uncertainty. If a candidate supervisor Bsup ⊆

W
�

0 is a solution of (Bθ , Bspec) for all θ ∈ 2, then Bsup
is said to be a robust solution of ((Bθ)θ∈2, Bspec). If in
addition Bθ ∩ Bsup 6= ∅ for all θ ∈ 2, then Bsup is said to
be a robustly nontrivial solution. �

Clearly, if any of the components of the hybrid plant model
from Section 3 depends on an uncertain parameter of which
only its range is known, this constitutes a family of plant
behaviours in the sense of Definition 5.3. The prototypical
example is the case in which the ODE (4) is uncertain, i.e.
the right hand side f is replaced by a parameter dependent
map f̂θ : � n × � m → � n with θ ∈ 2. Another example
that is covered by our general concept is the case of mea-
surement noise. Here, we replace Eq. (5) by

y(t) = ĝ(x(t), u(t), v(t)) , (10)

where v : � +
0 → � q belongs to a specified class of distur-

bances, say v ∈ V � {v| ∀ t ∈ � +
0 : ||v(t)|| < γ } for some

norm || · || and some γ > 0. For any fixed disturbance
v ∈ V , let Bv denote the behaviour induced by the hybrid
plant. We then ask for a supervisor that enforces the speci-
fication Bspec for all v ∈ V . In terms of Definition 5.3, we
ask for a solution to ((Bv)v∈V , Bspec).

Let (Bθ)θ∈2 be a family of plants Bθ ⊆ W
�

0 that
for any fixed θ ∈ 2 are realisable by some I/S/- ma-
chine. Then Theorem 5.2 implies that if a complete
supervisor Bsup solves the (ordinary) supervisory con-
trol problem (∪θ∈2Bθ , Bspec) then Bsup also solves the
supervisory control problem under parameter uncertainty
((Bθ)θ∈2, Bspec). The next theorem establishes the con-
verse: we can characterise the complete solutions under pa-
rameter uncertainty as solutions of (∪θ∈2Bθ , Bspec).

Theorem 5.4. Let (Bθ)θ∈2 be a family of behaviours Bθ ⊆

W
�

0 that are realisable by I/S/- machines. Let B∪ �
∪θ∈2Bθ and Bspec ⊆ W

�
0 . A complete supervisor

Bsup ⊆ W
�

0 is a robust solution of ((Bθ)θ∈2, Bspec) if
and only if Bsup is a solution of (B∪, Bspec). A robust
solution Bsup of ((Bθ)θ∈2, Bspec) is robustly nontrivial if
and only if Bsup is a nontrivial solution of (B∪, Bspec).

Proof. First assume that Bsup is a solution of (B∪, Bspec).
If Bsup is a nontrivial solution of (B∪, Bspec), then The-
orem 5.2 implies that Bsup is a robustly nontrivial solu-
tion for ((Bθ)θ∈2, Bspec). If Bsup is a trivial solution of
(B∪, Bspec), we refer to Proposition 4.4 and the fact that
the I/- property is retained under arbitrary unions of be-
haviours, to obtain that Bsup = ∅. In this case, Bsup is a
trivial robust solution. To prove the converse implications,
assume that Bsup is a robust solution for ((Bθ)θ∈2, Bspec).
Obviously, B∪ ∩ Bsup = ∪θ∈2(Bθ ∩ Bsup) ⊆ Bspec,
and hence Bsup enforces the specification on B∪. To es-
tablish admissibility, we need to show that that B∪ and
Bsup are nonconflicting. Pick any k ∈ � 0, w|[0,k] ∈

B∪|[0,k] ∩ Bsup|[0,k]. Then there exists an θ ∈ 2 such
that w|[0,k] ∈ Bθ |[0,k] ∩ Bsup|[0,k] and hence w|[0,k] ∈

(Bθ ∩ Bsup)|[0,k] ⊆ (B∪ ∩ Bsup)|[0,k]. Therefore, B∪

and Bsup are nonconflicting, and we conclude that Bsup
solves (B∪, Bspec). If in addition Bsup is assumed to be
a robustly nontrivial solution, nontriviality of Bsup as a so-
lution of (B∪, Bspec) follows from the simple observation
that B∪ ∩ Bsup ⊇ Bθ ∩ Bsup 6= ∅ for any θ ∈ 2. �

Note that in the context of our hybrid plant, where we may
assume that Bspec is realised by a finite automaton, we can
focus on the least restrictive solution B

↑
sup of (B∪, Bspec)

and then appeal to Proposition 4.6 for the completeness of
B

↑
sup. In this case, it is seen as a simple consequence of

Theorem 5.4 that the supervisory problem under parameter
uncertainty exhibits a unique least restrictive solution and
that this least restrictive solution coincides with B

↑
sup. The-

orem 5.4 says that we can, in principle, approach the robust
control problem by the same methods that have proved use-
ful for the ordinary control problem [11, 13]. In particular, if
we can compute the finite set B∪|[0,l], for some l ∈ � , we
can apply an l-complete approximation and derive a finite
automaton Pl that realises an abstraction of B∪. Supervi-
sory controller synthesis for Pl can then be carried out as
indicated in [11, 13].

Conclusions

It is commonly accepted that every engineering system
must be robust in order to provide a vital level of relia-
bility. In this paper, we have addressed this requirement
for a broad class of control problems in which we ask
for a discrete event supervisor that enforces a language
inclusion specification for an uncertain hybrid plant
model. Our discussion is set within the framework of
Willems’ behavioural systems theory, and includes —but
is not restricted to— the prototypical case in which the

uncertainty effects the continuous plant dynamics. As our
main result, we are able to characterise the desired robust
supervisors as solutions of an ordinary (non-robust) super-
visory control problem. Thus, a robust supervisor can be
derived by our abstraction based methods from earlier work.

References

[1] R. Alur, T.A. Henzinger, G. Lafferriere, and G. Pappas.
Discrete abstractions of hybrid systems. Proceedings of the IEEE,
88:971–984, 2000.
[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli.
Effective synthesis of switching controllers for linear systems.
Proceedings of the IEEE, 88:1011–1025, 2000.
[3] C.G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, 1999.
[4] J.E.R. Cury, B.A. Krogh, and T. Niinomi. Synthesis of su-
pervisory controllers for hybrid systems based on approximating
automata. IEEE Trans. on Automatic Control, 43:564–568, 1998.
[5] E. Frazzoli, M.A. Dahleh, and E. Feron. Robust hybrid
control for autonomous vehicle motion planning. Technical report,
LIDS-P-2468, Massachusetts Institute of Technology, May 2000.
[6] C. Horn and P.J. Ramadge. Robustness issues for hybrid
systems. In IEEE Proc. of the 34th International Conference on
Decision and Control, CDC’95, pages 1467–1472, 1995.
[7] X. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lem-
mon. Supervisory control of hybrid systems. Proceedings of the
IEEE, 88:1026–1049, July 2000.
[8] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reach-
ability specifications for hybrid systems. Automatica, 35:349–370,
1999.
[9] T. Moor. Approximationsbasierter Entwurf diskreter
Steuerungen für gemischtwertige Regelstrecken, volume 2 of
Forschungsberichte aus dem Max-Planck-Institut für Dynamik
komplexer technischer Systeme. Shaker-Verlag, Aachen, Germany,
2000. Also PhD thesis, Fachbereich Elektrotechnik, Universität
der Bundeswehr Hamburg.
[10] T. Moor and J.M. Davoren. Robust controller synthesis for
hybrid systems using modal logic. In Hybrid Systems: Computa-
tion and Control (HSCC’01), LNCS 2034, pp. 433–446, 2001.
[11] T. Moor and J. Raisch. Supervisory control of hybrid sys-
tems within a behavioural framework. Systems and Control Let-
ters, 38:157–166, 1999.
[12] T. Moor and J. Raisch. Think continuous, act discrete: DES
techniques for continuous systems. Proc. 10th Mediterranean
Conference on Control and Automation, Lisbon, July 2002.
[13] T. Moor, J. Raisch, and S.D. O’Young. Discrete supervi-
sory control of hybrid systems based on l-complete approxima-
tions. J. of Discrete Event Dynamic Systems, 12:83–107, 2002.
[14] J. Raisch and S.D. O’Young. Discrete approximation and
supervisory control of continuous systems. IEEE Transactions on
Automatic Control, 43:569–573, 1998.
[15] P.J. Ramadge and W.M. Wonham. Supervisory control of a
class of discrete event systems. SIAM J. Control and Optimization,
25:206–230, 1987.
[16] P.J. Ramadge and W.M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77:81–98, 1989.
[17] J.C. Willems. Models for dynamics. Dynamics Reported,
2:172–269, 1989.
[18] J.C. Willems. Paradigms and puzzles in the theory of dy-
namic systems. IEEE Transactions on Automatic Control, 36:258–
294, 1991.

