Compositional Verification of Finite Automata under Event Preemption

Yiheng Tang' and Thomas Moor?

Abstract— Given a number of synchronised automata, com-
positional verification seeks to verify non-conflictingness with-
out the explicit computation of an overall model. Technically,
the approach alternates conflict-preserving abstractions with
the composition of a small number of strategically chosen
automata and the literature reports substantial computational
benefits for examples of practical relevance. In this paper,
we re-visit this approach in order to address the situation of
preemptive events, i.e., events that are known beforehand to
be scheduled at highest priority. Our study is motivated by
high-level programming languages commonly used in industrial
automation, where events associated with actuators preempt
events associated with sensors.

1. INTRODUCTION

Modular and/or hierarchical architectures are an estab-
lished approach for the design of large-scale dynamic sys-
tems. In the present paper, we focus attention to modular
discrete-event systems (DES), i.e., the overall system is com-
posed by individual modules, each being a DES representable
by a finite automaton. In particular, each module refers to a
specific alphabet and the composition of the overall system
is via synchronisation of shared events [1]. For this system
class the overall state count of a monolithic representation is
exponential in the number of modules. Given a specific anal-
ysis or synthesis task, the question hence is whether and how
it can be addressed while avoiding an explicit construction
of a monolithic representation. This highly relevant question
has been addressed extensively in the recent literature; for
supervisory controller synthesis, see e.g. [2], [3], [4], for
analysis see e.g. [S], [6], [7], [8], [9]. In the present paper,
we address the verification of non-conflictingness and we do
so by following the approach of compositional verification,
as originally introduced by [6]. The basic plot is to (i)
simplify individual modules such that conflicts in the overall
system are retained (ii) strategically compose a small number
of modules (iii) iterate the former two steps until there is
only one module left. There is a great variety of so called
conflict-preserving abstractions that qualify for step (i); for
plain finite state machines see again [6], [7], [8], [9], for
extended automata see e.g. [10], [11]. Other well discussed
properties of DES under composition, e.g. controllability [6]
and opacity [12], were also shown being transformable into
the compositional non-blocking verification. Recently, [13]
also showed that the compositional verification approach
can be applied to efficiently verify any temporal logical
properties within CTL*-X.

12Lehrstuhl fiir Regelungstechnik, Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Cauerstr. 7, 91058 Erlangen, Germany; Email
Irt@fau.de

In our study, we include a distinguished class of events
in order to address the practical situation where individual
modules represent the behaviour of a programmable logic
controller (PLC) that interacts with a physical plant. In such
a setting, certain events will represent edges on line levels
associated with actuators, i.e., TurnMotorOn to activate a
motor of a conveyor belt in an automated manufacturing
system. When considering a state in which multiple events
are enabled, events associated with an actuator differ seman-
tically from the remaining events: the PLC will instantly
activate one of the eligible actuators and proceed to the
successor state. Hence, we would like to explicitly distin-
guish preemptive events in contrast to the remaining events
they preempt. This notion of preemption is also common
in models derived from Statecharts [14], like hierarchical
finite state machines in Ptolomy II [15], where outgoing
transitions of a so called macrostate can be preemptive; or
some Petri-net derivatives, e.g., Grafcet as defined by the
[EC-60848 [16], and UML Activity Diagrams [17], [18],
where token reconfiguration is considered as preemptive. A
convenient way to organise verification tasks for such DES
is to translate their behaviour into finite automata models at
a pre-processing stage which inevitably inherits the notion of
preemptive events and this motivates our study. For related
work, that addresses abstraction techniques in with event
preemption from a process-algebraic perspective, see e.g.
[19], [20], [21], [22].

If there was only one module, we would shape the
automaton by removing any outgoing transitions labelled
by non-preemptive events if at least one preemptive event
is active. However, for the case of multiple modules it is
readily observed that the proposed shaping does in general
not commute with synchronous composition. Hence we need
to re-visit conflict-preserving abstractions for our specific
use-case. As our main contribution, we identify a number
of abstraction methods that are conflict-preserving under
preemption and that comply with the proposed semantics of
preemptive events.

Remark 1. We are aware of the fact that our notion of
preemption is covered by the more general setting of timed
DES (TDES); see e.g. [23]. However, rather than to attempt
to lift the compositional approach to a TDES setting, we
believe that it is conceptually more promising to build on as
many readily available results as possible by only considering
our very specific notion of preemption. O

This paper is organised as follows. After recalling notation
and preliminaries in Section |lI, we discuss various methods

of conflict-preserving abstraction in Section The overall
procedure of compositional verification is then presented in
Section TV] We demonstrate computational benefits of our
approach by a simple but yet practical example in Section
Formal proofs are provided via the Appendix.

II. PRELIMINARIES
A. Events and languages

An alphabet X is a finite set of symbols also referred to
as events. Next to ordinary events, we consider three distin-
guished events. The two silent events " and 77 represent
internal operations of individual modules; see [1]. The two
variants differ semantically regarding preemption, which we
discuss in detail below; see Definition @] The termination
event w indicates process termination; see also [6]. By
convention, symbols that denote an alphabet do not contain
any of the three distinguished events, i.e. {t", 77, w}NZ =0,
and we explicitly write X U {7", 77, w} whenever we refer to
a set of symbols including the three distinguished events.

A string is a finite sequence of events. The empty string
is denoted €. Referring to a range of symbols, the Kleene
closure (-)* denotes the set of all strings; e.g., X* denotes
the set of all finite sequences of events from X, including the
empty string € € £*. For two strings s and ¢, the concatenation
is denoted sz. Note that es = s = se for any string s.
To annihilate any information regarding the occurrence of
silent events encoded by a specific string, we consider the
following three natural projections

p' i U{r", " W) = EU (T’ wh)"; (D
pf :EUl{t, T, w))" - EU{T", 0w 2)
p:EU{r", 7", w)" - EU{w)" 3)

which delete all 7", or all 77, or all " and all 7 events,
respectively; see e.g. [24] for a formal definition.

B. Automata
Definition 1. A finite automaton is a tuple G = (Q, Z, —, o%
with Q a finite state set, ¥ a finite alphabet, - C Q X (£ U

(", 77, w}) x Q the transition relation, and Q° C Q a set of
initial states. O

Note that we do not require automata to be deterministic.
We use the infix notation x — y for (x,0,y) € —>. The event
o is active in state x if there exists y such that x 5 y. This
is denoted x .

The transition relation is extended to string-valued labels
in the common way; i.e., (i) let x—= x for all x € Q and (ii)
iteratively let x = zforall x,ze Q, se€ (U {T", 17, w})*
and o € £ U {1", 7", w} provided that x> y and y 7 2 for
some y € Q. The set-theoretic complement of the extended
transition relation is denoted -4, i.e., we write x —fé y for
(x,s,y) ¢ —. Moreover, we write X 5 Y for X, Y € 0
whenever there exist x € X and y € ¥ s.t. x 5 y. Finally,
X and G- stand for X > Q and Q° > Q, respectively.

As with natural projections on strings, we associate with
— C OXE U{T", 7, w})" X Q the abstract transition relation

=C 0 X (X U {w)* x Q to annihilate any requirements
imposed on the occurrence of silent events. Technically,
we define x = y if and only if x N y for some s’ €
CU{r", 7, w})* s.t. p(s’) = s. The abstract transition relations
S"COXCEU{TP,w))'xQand =P C OXE U {T" o))" X0
are defined literally the same, except we now refer to the
projections p” and p”, respectively.

The termination event w indicates process termination; i.e.,
there will be no events after w. For a well formed automaton,
we have that x — y implies y gé for all o € 2 U {7", 7", w}.
In this case, x is a marked state while y is a terminal state.
For graphical representations, marked states are denoted by
full black shapes and terminal states are omitted for clarity.

Given two automata, their synchronous behaviour is rep-
resented by their synchronous composition [1].

Definition 2. Given automata G; = (Ql,El,—n,Q?) and
G, = <Q2,Ez,—>2,Qg), their synchronous composition is
defined by

G111 G2 :=(Q1 X 02,51 Uy, —, 09 x 09)
where
(x1,%2) 5 (&}, Xp) if € (T NZ) U}, X151X}, xa 255
(x1, X2) > (X}, x2) if 0 € (B \Z2)U{T", 77}, 1 =1 x5

(X1, %2) 5 (x1,) if € (E\ENUIT", TP}, 1y o0 . [

For multiple synchronised automata, we say an event
is shared if it appears in the alphabet of more than one
automata, otherwise it is private.

A common approach to automata abstraction are quotient
automata, i.e., one considers a suitable equivalence relation
~C O x Q and merges equivalent states. We denote [¢q] :=
{q" € Ol(g,q") €~} the equivalence class associated with a
state g € Q w.r.t. ~ for the following formal definition.

Definition 3. Given an automaton G = (Q,%,—, Q%) and
an equivalence relation ~C Q X Q, the quotient automaton
G/~ of G w.rt. ~ is defined by G/~ = (Q/~,Z,—/~, 0%
where O/~ = {[gllq € O}, =/~ ={lp] = [4]lp — ¢} and
0° =1[¢"11¢" € 0. O

C. Event preemption

We distinguish preemptive events in contrast to the re-
maining non-preemptive events. Whenever an automaton
attains some state in which at least one preemptive event is
active, some active preemptive event must occur next. This
effectively disables the non-preemptive active events and is
expressed by the following shaping operation.

Definition 4. Given an automaton G = (Q, X, —, QO) and a
set of preemptive events ¥ C ¥ U {w}, denote

o?

Q' :={xe€Q|Ac” e U{t"}: x —})

the set of preemptive states. Then the shaping operator S
is defined by S(G) := (0, %, -5, 0% where p S ¢ if and
onlyifpgqand(i)a'eZ'"U{T”} or (i) p ¢ OF. O

Preemptive states are states with some active preemptive
event. Note that —°C— and clause (i) ensures that preemp-
tive events remain active, while clause (ii) ensures that non-
preemptive events remain active provided that no preemptive
event is active. Note that we optionally allow for termination
w to be preemptive. Moreover, the above definition always
treats 77 ¢ X as preemptive and 7" ¢ X as non-preemptive.
We say an automaton G is shaped if G = S(G).

The shaping operator in general does not commute with
the synchronous composition. Considering two automata G
and G, that share some preemptive events, we may encounter
that a state (x,x;) in G || G, is not preemptive while x;
and/or x, are preemptive states in G| or G», respectively.

III. CoNrLICT PRESERVING ABSTRACTION W.R.T. PREEMPTION

An automaton is non-blocking if from all reachable
states in some future w can be executed, i.e., if faithful
termination is persistently possible. For synchronised au-
tomata, the terminology of non-conflictingness is usually
used synonymously for non-blockingness of the synchronous
composition. This is not adequate when considering event
preemption. Here, we are interested in a non-blocking overall
behaviour after shaping.

Definition 5. An automaton G = (Q, %, —,0% is non-
blocking if for each x € Q s.t. G = x for some s € DI

there exists t € 2* s.t. x é A family (G;),<i<, of automata
is non-conflicting w.r.t. preemption if S(G1 || G2 || --- || G»)
is non-blocking. O

Suppose we are given a family of automata and ask
whether they are non-conflicting w.r.t. preemption. This
question can be conventionally answered by first computing
an explicit representation of the synchronous composition,
shaping the result, and finally testing for non-blockingness.
However, on a relevant scale we must expect an intractable
state count for the intermediate result, which motivates
us to seek proper abstraction methods that we can apply
to individual automata while not affecting the final result.
However, since shaping in general does not commute with
the synchronous composition, we need to adapt the known
results to account for our specific situation of preemptive
events. To this end, we impose the following requirement.

Definition 6. Given two automata G and G’, we say they
are conflict equivalent w.rt. preemption, denoted by G ~g
G’, if for any automaton 7, it holds that G and T are non-
conflicting w.r.t. preemption if and only if G’ and T are
non-conflicting w.r.t. preemption. O

For a family of automata Gy, - ,G, we may replace any
one G;, 1 < i < n by an abstraction G.. As long as the
abstraction is conflict equivalent w.r.t. preemption, checking
SGi | G2 |l ==~ Il Gi |l --- | Gn) for non-blockingness
will lead to the same results as checking S(G; || G, ||

|| G,). This argument readily extends to abstracting
multiple component automata and/or to composing a small

G 1.2 g3 SrmenBl T 2
—-0—>0—0 -0—>0® —-0—0
f'& T”l
P

SCID oy g SEOID ?L(zt)
-0%0%0 S

TN

05050

13 23 34

Fig. 1.
preserving w.r.t. preemption (the
the definition of quotient automaton)

Abstraction through observation equivalence is not conflict-
" self-loop in G/~ is preserved due to

number of automata to increase the chances to find adequate
abstractions.

Our candidates for abstraction are quotient automata and
we are left to impose suitable conditions on equivalence
relations that lead to conflict equivalent abstractions w.r.t.
preemption. One such condition is the following.

Definition 7. Let G = (Qg, 26, =g, Q%) be an automaton
with an equivalence relation ~C Qg X Qg. Then ~ is
reachability consistent on G if for any automaton 7 =
(QT,ET,—>T,Q(%) and any event o € L5 UZr U{T", 77, w},
it holds

(C1) if (Ixgl.xr) 5% (Iygl.yr). then for any x;; € [xcl,

. ’ ’ p(@) S ’
there exists yg; € [yg] s.t. (x5, x1) =% (V> V1) 3
(C2) if (xg, x1)55(v6» yr), then ([xg1, xr)>5(ygl.yr). O

The above definition is a variation of the well-known
observation equivalence [1], with the main difference that we
now explicitly refer to the test automaton 7. To appreciate
the necessity of our variation, consider the example in Fig. [I]
The two automata G and T are given with alphabets X =
Y7 = X7, = X7 = {o”} and the global behaviour S(G || T) is
blocking. However, merging the two observation equivalent
states 1 and 2 in G leads to a non-blocking global behaviour
S(G/~ || T). Thus, observation equivalence is generally not
suitable for our purposes. In contrast, reachability consis-
tence is guaranteed to lead to adequate abstractions.

Proposition 1. Let G = (Qg, g, ¢, Q%) be an automaton
with a reachability consistent equivalence relation ~C Qg X
Q¢ on G. It then holds that G ~g G/~. O

For practical purposes it now remains to find reachability
consistent equivalence relations.

A. Abstract non-preemptive silent event

In this section, we focus attention on abstractions through
projecting the non-preemptive silent event 7. We define a so
called observation equivalence w.r.t. non-preemptive events
(OEn), which is finer than observation equivalence and is
reachability consistent on any shaped automaton.

Definition 8. Given an automaton G = {(Q,%,—, 0%, an
equivalence relation ~" C QX Q is an observation equivalence
w.r.t. non-preemptive events (OEn) on G if for all states

,h 4B ad G/ Nt & o, ¥
b T,
Bs, = NEs

Fig. 2. Abstraction example through OEn

1 2 3 N 1 2 3
6 L5 dand G~ Hapd a,
N TTn Ta , E‘{> 1NTa)

o0->05e o5>e
i 5 6 51 o]

T 1 2 3 S@r ”1T1) 212 313

—~0L-0-40 I WA GG
SGID g w2 & "N o [612
—»o—»o o5 520> @

Fig. 3. Counterexample for abstraction being not conflict-preserving w.r.t.
preemption when utilising OEn on an unshaped automaton

" x, and for all o € X U {7, 77, w},

X1, X € Q st.oxp ~
the following holds:

(N1) if x; 5 y; for some y; € Q, then there exists X, y, € Q
¢
s.t. xp :>”5cz ;r)>y2 and y; ~" y;;

(N2) if x; € QP then x, € QP. O]

Proposition 2. Given a shaped automaton G = (Q,XZ,—
,0% = S(G) with an OEn ~"C Q x Q, it holds that
G =5 G/~". O

An example of abstraction through OEn is given in Fig.[2]
G ={(0,%,—,0% is shaped with £ = {a,b} and XF = {w}.
An OEn ~"C Q x Q can be found s.t. (2,4) € ~". Note that
(3,6) ¢ ~" since state 6 is preemptive but state 3 is not, thus
they must remain distinguishable after abstraction.

Also note a counterexample given in Fig. [3] when the pre-
requisite of shaped input automata is not met: two automata
G and T are given s.t. g = {a,b, 07}, 2V, = {07}, 1 = {a, b},
2’; = 0, with G # S(G). The global behaviour S(G || T)
is non-blocking. Since state 52 is preemptive, state 33 is
unreachable, but becomes reachable in S(G/~" || T) since
states 2 and 4 are equivalent and thus are being merged,
rendering S(G/~" || T) blocking.

To compute OEn, one can first pre-partitioning the state
set of a given automaton into two classes, preemptive and
non-preemptive states. Next, the abstract transition relation is
constructed and the partition is refined to a bisimulation. In
our implementation, we have applied the two-pass change-
tracking algorithm for partitioning delayed bisimulation as
introduced in [25]. By factoring 7"-loops beforehand , the
adopted algorithm uses topological sort of 7" transitions
to identify the delayed transition relation by a dynamic
programming approach, as proposed by [26].

B. Abstract preemptive silent event

In this section, we focus attention on abstraction through
projecting the preemptive silent event 77. We first define the
observation equivalence w.r.t. preemptive events (OEp).

Definition 9. Given an automaton G = {(Q,%,—, 0", an
equivalence relation ~” C OxQ is an observation equivalence
w.r.t. preemptive events (OEp) on G if for all states x;, x, € Q
s.t. x; ~P xp and for all o € £ U {1", 77, w}, the following

holds:

P1) If x; % y; for some y; € Q, then there exists y, € Q
s.t. xp p/’(=0')>p vy, and y; ~* y;;

(P2) If x; € QP then x, € QF. O

For any automaton, OEp implies (C1) of Definition [/| In
comparison to OEn, matching (C1) for OEp is somewhat

more ‘relaxed” then the case for OEn. Firstly, we can

pP (o) pP (o)
equivalently replace x, =—=" y, by x, Sr g 2 v =P V2

in (P1) without changing the meaning of Definition [9] while

n

analogically in (N1), after ¥ p—cr)>, we do not allow additional
7" transitions to connect the target state y,, since such 7"
transitions are either enforced to be postponed or even com-
pletely deactivated by preemptive transitions (even loops)
with some test automaton. However, when discussing OEp,
7P itself is preemptive and will not be shaped. Secondly, we
do not require the input automaton to be in shaped form when
considering OEp, since the part of “preemptive behaviour”
will not be affected by the final shaping. However, (C2) can
only be satisfied if the given automaton does not share any
preemptive events with the test automaton.

Proposition 3. Given an automaton G = {Qg,2g, —¢, QOG)
with an OEp ~”C Qg X Qg, it holds for any automaton
T =(Qr,2r, o7, %) with ZL.NEL = 0 that S(G || T) is non-
blocking if and only if S(G/~” || T) is non-blocking. L]

When the prerequisite 2. N X7 = 0 is not met, (C2) may
be invalidated in that although OEp separates preemptive
states from non-preemptive ones, it may happen that for two
equivalent preemptive states, one becomes non-preemptive
when synchronizing with some test, while the other is always
preemptive by having 77 active. This motivates us to refine
OEp s.t. preemptive states with or without active 77 are
distinguished.

Definition 10. Given an automaton G = (Q,X,—, Q°%), an
equivalence relation ~” C Q X Q is a strong observation
equivalence w.r.t. preemptive events (SOEp) on G if for all
states x1,x, € Q s.t. x; &P x, and for all o € LU {1", 17, w},
the following holds:

(S1) If x4 % y; for some y; € Q, then there exists y, € Q

(0)
s.t. x p:::” y2 and y1 =P ya;
(S2) If x; ——> then x; ——> O
Note that in SOEp, it is still guaranteed that preemptive

states are never equivalent to non-preemptive states. More

precisely, for any x; =P x; and x; —T,L x; and x, have
exactly the same set of active events. It turns out that SOEp
is reachability consistent on any automaton, which implies
conflict equivalence w.r.t. preemption.

Proposition 4. Let G = (Q, %, —, Q°) be an automaton with

a SOEn ~” C Q x Q. It then holds that G ~s G/~". O]

Similar to OEn, the computation of OEp as well as SOEp
can be accomplished by the topological-sort based change-
tracking algorithm for weak bisimulation introduced in [25],
which is based on a topological sort of states w.r.t. 77-
transitions. Note that states on a 77-loop are always OEp
or SOEp equivalent, but the resulting 77-self-loop in the
quotient cannot be removed unless another non-self-looping
7P-transition is active. The topological sort shall indeed
neglect those 77-self-loops.

IV. CoMPOSITIONAL VERIFICATION

Recall that given for a family of automata G;, 1 < i <
n, the global behaviour amounts to G := S(G; || G2 ||
-+ || G,), where each G; is subject to abstractions by the
methods introduced in Section I} However, when modelling
each G; from first principles, silent events are not directly
utilised, and this potentially results in overly coarse state
equivalences. The common procedure applied at this stage
substitutes transitions with local events by 7-transitions. This
is referred to as hiding [6], and we adapt the procedure to
account for preemptive events.

Definition 11. Given an automaton G = (Q,X,—, Q°) and
an event set A C X, define —” by

x5hy itx Sy and o€ A\ TP, (5)
x5hy itxSyand o e Ansy 6)
xghy ifxiyandowéA. 7

Then hiding A in G results in the automaton G\ A :=
(0.2\A, =", 0%). O

To abstract an automaton for compositional non-blocking
verification, it is obvious that substituting all private
events correspondingly into 7" or 77 will not affect non-
blockingness of the global behaviour. After hiding private
events A; in each Gj, applying abstraction methods intro-
duced in Section m on each G;\ A; will achieve a more ap-
preciable state reduction. Afterwards, a small set of automata
is chosen and replaced by their synchronous composition.
Since this potentially introduces new private events, hiding
and abstraction shall be performed again. These two compu-
tational steps are iterated until only one automaton remains.
By construction, the non-blockingness of this finally shaped
automaton coincides with that of the global behaviour. This
iteration has been proposed in [9, Algorithm 1] with pseudo-
code. In addition, if the verification result is negative, a
counterexample (i.e. a trace from some initial state to some
blocking state) can be directly computed through the state
merging expansion algorithm introduced in [27].

We now comment on the detailed procedure of abstracting
one individual automaton. Note that abstracting through OEn
requires the input automaton to be in shaped form. In fact,
we can always shape an automaton without influencing the
global behaviour as long as all preemptive events are private.

Proposition 5. Let G; = (0Q1,%,—,0)) and G, =
(02,%, =7, 09) be two automata s.t. ¥ N X5 = 0. It then
holds that S(G, || G2) = S(S(Gy) || G2). L]

The above proposition reads as follows: if some state is
preemptive due to some private preemptive event, this state
will remain preemptive under any composition since no other
automaton can deactivate this event. Thus, Proposition [5] can
be further relaxed in that we can always shape an automaton
by only using its private preemptive events (shared preemp-
tive events will not shape non-preemptive events, but not
being shaped either). When hiding is properly performed, we
can always shape an automaton w.r.t. 77, i.e. replace G; by
Sr)(G;) where Si;»(-) denotes a specific shaping operation
which deactivates non-preemptive events only when 7, is
active on this state. To this end, each single automaton G;
can be abstracted s.t. we first hide its private events, shape
it only w.r.t. 7, and then decide abstraction methods to be
applied based on whether it shares preemptive events or not:
1) if there are no shared preemptive events, construct a

quotient automaton w.r.t. OEn and OEp since it always

holds that S{Tp](G,') = S(Gy);

2) if shared preemptive events exist, check if the automaton
is in shaped form and construct the quotient automaton
w.r.t. OEn if possible. Then construct the quotient au-
tomaton w.r.t. SOEp.

Obviously, attempting to eliminate shared preemptive
events while heuristically choosing automata to compose
during the compositional non-blocking verification brings
great advantage for state reduction since both OEn and OEp
have more chances to be applied.

V. EXAMPLE

Consider a transport system with k consecutive conveyor
belts delivering workpieces from a source to a sink, see Fig.
Each conveyor belt as well as the source and the sink is
equipped with a sensor detecting the arrival and departure
of workpieces. Moreover, each conveyor belt is driven by
a motor. The controlled behaviour of each conveyor belt
CB; is described by four automata, two for the uncontrolled
plant behaviour (G{ and Gf) and two more for the modular

sensory sensor;
g o o U
| GED o

Fig. 4. A k-conveyor-belt example

Sensory Sensor|

TABLE I

EVENTS IN THE TRANSPORT-SYSTEM EXAMPLE

event description preemptive
on; motor; on yes
off; motor; off yes
ar; sensor; workpiece arrival no
;i sensor; workpiece departure no

in; CB; workpiece entrance no

G in (—’ ﬁ :ufJ‘, ?,{;
inA Q) on; Q)i

Ky
». O ari lv, b5 >@ _>Om,+1 o - lvo om, ml 0o
A ar1+ 1) off; in; A ary)

h

ar:+2
fzrﬁl ah+2
ar, Vi1
i+l ! vi_ IT %‘ \ oﬁ”O ar,w ur,+71

i arin
>.’$._>.arl| . _>. =
tar,p Qon,

i

Fig. 5. Automata of the k-conveyor-belt example

controller (H{' and Hf’), see Fig. 5| All utilised events are
listed in Table|l} In particular, on; and off; are associated with
actuators which are intended to preempt all sensor events;
i.e., for the global behaviour, actuator events can always be
executed quickly enough without any delay that would allow
for the occurrence of a sensor event. The automata for each
CB; in Fig. [] are designed in the following manner:

a) Plant: The two models G¢ and Gf.’ are interpreted by
synchronous composition. G{ describes the cyclic detection
of workpieces while G;’ implies that sensor events can only
occur when the motor is on. As plant components, they
formally allow for any actuator event in any state. However,
to easy modelling, actuator events that are considered inap-
propriate lead to a dedicated error state, which is blocking.
Special care is to be taken for in; events: although they are
associated with fictive sensors, we must declare by which
component they are driven; from the perspective of CB;,
in; is considered an actuator event imposed on CB;, i.e.
the preceding conveyor belt CB;_; may potentially deliver a
workpiece to CB; at any time. In contrast, in;;; semantically
is a sensor controlled for CB;, i.e. CB; decides when to
deliver a workpiece to the successive CB;,;. Thus, in; at
specific states for CB; is considered an inappropriate actuator
event and lead to the error state.

b) Controller: One modular controller for each CB;
is designed in an ad-hoc manner. It allows for any sensor
event in any state which shall be potentially preempted by
actuator events when considering the global behaviour. Each
controller is composed from two parts: H{ describes the
nominal repetition of the sequence lv;_; - on; - ariy - off ;. On
the other hand, Hib utilises lv; and ar;,» to monitor whether
CB;;; is busy; if CB;;; is busy, CB;;; shall halt and wait
until CB;;; becomes idle{ﬂ For the overall controller, the
synchronous composition of H{ and Hf’ is taken. However,
this allows for SCCs with actuator events only, a.k.a. activity
loops. Since a controller must not have any activity loops,
these are manually removed. The resulting controller module
for CB; is denoted H,.

For each CB;, the controlled local behaviour amounts to

=G|GY |H;, 1<i<k, ®)

Note that for the right most CBy, an event argyp will be generated
which does not belong to any plant component and thus can be neglected
through natural projection

with Ko given by Fig. 5] for the special case of the source.
After the first workpiece, the source will only send another
workpiece when CB, has received the former one. The
behaviour of the sink is represented by the automaton G¢
Finally, the global controlled behaviour complies with

k+1°

K := S(Ko | Gy N | <i<))

and we verify non-blockingness by the approach presented
in the previous sections. The time elapsed using a PC with
an 1.80 GHz Intel i7-10510U CPU and 16 GB RAM is listed
in Table [l The first column shows the count of conveyor
belts, the second column shows the approximate overall
count of the reachable states before shaping. The column
“with quotient” shows the time elapsed when applying the
complete abstraction procedure as introduced in Section
To avoid computation of partitions on generators with
exaggerated state count (which may take longer than com-
puting the synchronous composition), partition algorithms
are omitted when the input automaton has a state count
of more then 10*. In the column “shape only”, we only
apply the abstraction “shaping w.r.t. {t”}”. In either case,
the employed heuristics for composition consistently chooses
the two left most components. Finally, in the last column “no
abstraction”, we show the elapsed time for verification when
no abstraction is applied. As can be seen, without abstraction
the elapsed time is considerably longer than with abstraction.
In addition, a decent time reduction can be observed in the
“shape only” column, since for this example each component
automaton only has local preemptive events. Nevertheless,
the foremost result is still provided by utilising quotient
construction w.r.t. OEn and OEp, which at k = 10 reduces
the elapsed time to about 20%.

TABLE I

ELAPSED TIME (“~” FOR MORE THAN 10MINUTES)

k apprx. state cnt. with quotient ~ shape only no abstraction
7 20x107 1.4s 2.6s 62.5s

8 1.8 x 108 2.7s 7.8s 493 8s

9 15x10° 6.9s 2435 -

10 13x10' 21.8s 97.8s -

VI. CONCLUSIONS AND PROSPECTS

In this paper, we have re-visited compositional non-
conflictingness verification to account for preemptive events.
We have identified quotient-based conflict-preserving ab-
stractions that comply with our notion of preemption and
that can be used on a per—component basis. Although not
guaranteed in general, computational benefits are expected
for relevant applications and have been demonstrated by a
practical example. Technically, our contribution is based on
adequate refinements of the notion of observation equiva-
lence. In future work, we envisage to suitably adapt further
methods of abstraction based on those proposed in [9]. It
will also be interesting to discuss how our work relates to
the process-algebraic abstractions presented in [21], [22].

[1]

[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

R. Milner, Communication and Concurrency. USA: Prentice-Hall,
Inc., 1989.

H. Flordal, R. Malik, M. Fabian, and K. Akesson, “Compositional
synthesis of maximally permissive supervisors using supervision
equivalence,” Discrete Event Dynamic Systems, vol. 17, 11 2007.

S. Mohajerani, R. Malik, and M. Fabian, “An algorithm for weak syn-
thesis observation equivalence for compositional supervisor synthesis,”
IFAC Proceedings Volumes, vol. 45, no. 29, pp. 239-244, 2012, 11th
IFAC Workshop on Discrete Event Systems.

S. Mohajerani, R. Malik, and M. Fabian, “A framework for composi-
tional synthesis of modular nonblocking supervisors,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 1, pp. 150-162, 2014.

R. Malik, D. Streader, and S. Reeves, “Fair testing revisited: A process-
algebraic characterisation of conflicts,” in Automated Technology for
Verification and Analysis, F. Wang, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 120-134.

H. Flordal and R. Malik, “Compositional verification in supervisory
control,” SIAM J. Control and Optimization, vol. 48, pp. 1914-1938,
2009.

R. Su, J. H. van Schuppen, J. E. Rooda, and A. T. Hofkamp,
“Nonconflict check by using sequential automaton abstractions based
on weak observation equivalence,” Automatica, vol. 46, no. 6, pp. 968
- 978, 2010.

S. Ware and R. Malik, “Conflict-preserving abstraction of discrete
event systems using annotated automata,” Discrete Event Dynamic
Systems, vol. 22, pp. 451-477, 2012.

C. Pilbrow and R. Malik, “An algorithm for compositional nonblock-
ing verification using special events,” Science of Computer Program-
ming, vol. 113, 06 2015.

R. Malik and R. Leduc, “Compositional nonblocking verification
using generalized nonblocking abstractions,” IEEE Transactions on
Automatic Control, vol. 58, no. 8, pp. 1891-1903, 2013.

S. Mohajerani, R. Malik, and M. Fabian, “A framework for compo-
sitional nonblocking verification of extended finite-state machines,”
Discrete Event Dynamic Systems, vol. 9, 09 2015.

S. Mohajerani and S. Lafortune, “Transforming opacity verification to
nonblocking verification in modular systems,” IEEE Transactions on
Automatic Control, vol. 65, no. 4, pp. 1739-1746, 2020.

B. Lennartson, X. Liang, and M. Noori Hosseini, “Efficient temporal
logic verification by incremental abstraction,” 08 2020, pp. 894-899.
D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. §, no. 3, pp. 231 — 274, 1987.
C. Brooks and E. Lee, “Ptolemy II: An open-source platform for
experimenting with actor-oriented design,” Berkeley EECS Annual
Research Symposium (BEARS), 2016.

J. Provost, J. Roussel, and J. Faure, “A formal semantics for grafcet
specifications,” in 2011 IEEE International Conference on Automation
Science and Engineering, 2011, pp. 488-494.

Object Management Group, OMG Unified Modeling Language. An
OMG Unified Modeling Language Publication, 2017.

R. Eshuis, “Symbolic model checking of UML activity diagrams,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), 2007.

J. Baeten, J. Bergstra, and J. Klop, Syntax and defining equations for
an interrupt mechanism in process algebra, ser. CWI report. CS-R.
Centrum voor Wiskunde en Informatica, 1985.

“Priorities in process algebras,” Information and Computation, vol. 87,
no. 1, pp. 58-77, 1990, special Issue: Selections from 1988 IEEE
Symposium on Logic in Computer Science.

G. Liittgen, “Pre-emptive modeling of concurrent and distributed
systems,” 1998.

R. Cleaveland, G. Liittgen, and V. Natarajan, “Priority and abstraction
in process algebra,” Information and Computation, vol. 205, no. 9, pp.
1426-1458, 2007.

B. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 39, pp. 329-342, 1994.

C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

A. Boulgakov, T. Gibson-Robinson, and A. Roscoe, “Computing
maximal weak and other bisimulations,” Formal Aspects of Computing,
vol. 28, pp. 381-407, 2016.

[26] S. Blom and S. Orzan, “Distributed state space minimization,” Elec-
tronic Notes in Theoretical Computer Science, vol. 80, pp. 109-123,
08 2003.
R. Malik and S. Ware, “Counterexample computation in compositional
nonblocking verification,” IFAC-PapersOnLine, vol. 51, pp. 416-421,
01 2018.

[27]

APPENDIX - PROOFS
We prepare our proofs by introducing some additional terminol-
ogy. A trace is a sequence of states related by transitions, e.g.

o oo Tk
Xo = X| = 0= X

(10)

with length k + 1. We may also use the terminology all traces in
xS y, since x may reach y via the same string by multiple distinct

traces. Moreover, for the transitions in the quotient automaton of
G w.rt. ~, we utilise the notation -7 and = .

A. Proof of Proposition [I| (Consistency)

Let T = <QT,ZT,—>T,Q(}> be an automaton. (=) Suppose
S(G || T) is non-blocking. Pick any ([xgl,xr) € Qg/~ X Qr s.t.
SG/~ || T) 58 ([xc), xr) for some s € (X U Zr)*. Then by
(C1), we observe by induction that there exists some x;; € [x¢] s.t.
SG || T) =S (xg, xr). Since S(G || T) is non-blocking, it holds

(X x7) 2.5 for some £ € (Z; U Zy)*. Then by induction on (C2),

([xg], x7) és holds. Since ([x¢], x7) is arbitrarily chosen, this

establishes that S(G/~ || T) is non-blocking. (&) The converse
implication follows likewise.

B. Proof of Proposition 2| (OEn)

To obtain Proposition 2} we establish Lemmata [T and [2] to match
(C1) and (C2) of Definition , respectively. Note that since ="
implies =, it is self-evident that replacing = by =" (or =)
in Definition [7] yields a strictly stronger version of reachability
consistency, which obviously implies conflict preservation under
preemption as well. Thus, in this paragraph, since OEn only
considers 7" as silent, we utilize = to denote =" and p to denote
p" for brevity.

Lemma 1. Let G = (Qg,%g,—g, 0% = S(G) be a shaped
automaton with an OEn ~"C Qg X Qg on G. For any automaton
T ={(Qr,Zr,—7, 0}, if for any [xg], [ys] € Qg/~" and xr,yr €
Or, ([x], x7) 58 ([yg], yr) for some o € X5 UXrU{t", 7, w} , then

. p(o)
for all x; € [x], there exists some yg; € [yg] s.t. (x5, x7) ==

(y/GayT)~

Proof. We split the proof into two cases:
(Case A) [xg] i& [yc]- Note that o € Z5 U {7", 77, w}. From

(N1), we have

, € - PO ,
X6 =6 X6 —G Yg (11)
in G for some %z € Qg and y; € [yg]. This implies that in G || T,
we have

, - p(o) ,
(X X1) = (Fg X1r) o (¥ Y7)- (12)

If all traces in @ for all x;; can be preserved under shaping, we

(o) .
conclude (xg, xr) ﬂ___>s (5> yr)- We now prove that will not
be affected by shaping, and we do so via two further sub-cases:
(Case A.l1) o€ 2‘(’; U{t?}. Then [xg] is a preemptive state and from
(N2), x;; must be preemptive as well. Since G = S(G), " is not
active on xg, thus it holds x; = ¥g. Consequently, it follows
(x5, xr) 5 (g>yr) in G || T. Since this transition is equipped
with a preemptive event, it will not be affected by shaping.

(Case A2) o ¢ Zg U{r?}. From (N2), since G = S(G), it holds that
G/~" = 8(G/~"). Thus, [x¢] is not preemptive and x; cannot be
preemptive either. Since G = S(G) and o is not preemptive, all
states on any trace in xg ;G Xc before X are not preemptive.

On the other hand, ([xg], x7) 5s (ygl, yr) implies that ([xg], x7)
is not preemptive, which indicates that no private preemptive
event or 77 is active on xy. Hence, we conclude that all states
on any trace in (xg, Xr) S (Xg, xr) before (Xg,xr) are not
preemptive, since even if xr is preemptive, it can only own active
shared preemptive events, and they will be steadily deactivated
by states before Xz on traces in xg ;:»G Xg. Furthermore,

(Xg, XxT) ﬂ (v5»yr) will not be affected by shaping either:

if oo = 7", this will be a trivial transition; otherwise, Xg LG VG

and, since G = S(G), ¥ is not preemptive, implying that (%, x7)

is not preemptive either.

(Case B) [xg] iff; [y]- Then xr :T yr. Note that o is either
a silent event or private in 7', which implies

(X x7) 5 (X5 7). (13)

Note that [xg] = [ys] and thus x; € [yg]. We then show that @)

will not be affected by shaping:

(Case B.1) o € X7 U {r”}. Then is not affected by shaping.

(Case B.2) o ¢ Z” U {r?}. Then ([x¢], x7) is not preemptive, indi-
cating for any x; € [xgl, (x¢,xr) is not preemptive, otherwise
([xg], x7) is preemptlve O

Lemma 2. Let G = {(Qg,%g,—¢, 0% = S(G) be a shaped
automaton with an OEn ~"C Qg X Qg on G. For any automaton
T = (Qr. %7, =7, Q). if for any x¢,yc € Q¢ and x7,yr € O,
(xg, xT) 5s (vg,yr) for some o € s U Xy U {7", 77, w}, then it
holds that ([xg], x7) — ([yg], X7).

Proof. From the construction of quotient automata, we obtain
[x6] = [y6]- Thus, in G/~" || T we have (Ixgl,xr) = (Iyl.yr).
We now show that this transition is not affected by shaping.

(Case A) o is preemptive. Then ([x¢], xr) 5 (Iyg), yr) is not
affected by shaping.

(Case B) o is not preemptive. Then (xg, x7) is not preemptive,
implying that no private preemptive events or 77 are active in xg
or xr. In addition, (xg, xr) cannot be synchronised by any shared
preemptive event. It now follows that ([xg], x7) is not preemptive
since if so, it must hold [xg] —>(, in G/~" for some o? € Zp u{r’}.

oP
Since (xg, x7) is not preemptive, it follows xg zG X¢ —¢g where

x¢ # Xg. As G = S(G), we conclude that x; is not preemptive,
which contradicts with (N2) since the case assumption requires
[xg] to be preemptive. Thus, ([xg],xr) is not preemptive and

(g1, %) =5 (yel,yr)- O

C. Proof of Proposition 3] (OEp)

We establish Lemmata [3] and [to imply Proposition [3] Note that
Proposition [3] requires a disjoint set of preemptive events. In this
section, = denotes =” and p denotes p” since we only focus on

abstracting 77.

Lemma 3. Let G = (Qg,%, ¢ %) = 8(G) be a shaped
automaton with an OEp ~ C Qg X Qg on G. For any automaton
T =(Qr. 27, =7, Q). if for any [xc]. [vc] € Qg/~" and xr,yr €
Or, ([xg], x7) 5s ([ygl, yr) for some o € X5 UErU{T", 77, w} , then

p(o)
for all x;; € [xg], there exists some y; € [yg] s.t. (x;, x7) =:>5

(y(;a yr)-

Proof. We organise the proof by two cases:

p(o)

(Case A) [xg] —>G [vc]. From (P1), x; = y;; in G for some

Yg € [ycl. Tt follows that in G || T we have (x;, xr) => g yr)-

(o)
In the following, we show that traces in (xg;, xr) p=:> g yr) will
not be affected by shaping. There are two further sub-cases:
(Case A.l) o € 2 U {1

(¥5»yr), all neighbouring states are via transitions with preemp-
tive events.
(Case A2) o é Ep U {7”}, then ([xg], xr) is not preemptive. This

p? (o)
P}, then on any trace in (x;,xp) —="

implies x —,46 for any x;; € [xg]. Thus, xg —>G and (xG,xT) N
It also follows that (xg,xr) cannot be preemptive, since if so,
([x], xr) would be preemptive, too. To this stage, we have in G ||

T either directly (x;, xr) — (v yr) OF (X X7) > (Xg,yr) =
OG> yr) for some % € Qg. In the latter case, all neighbouring
states in any trace of (Xg,yr) S (yg»>yr) are connected with 77
transitions, which obviously will not be affected by shaping.

(Case B) [xc] 1}5 [yc] in G/~. The proof of this case is
identical to that of Case B in Lemma [Il O

Lemma 4. Let G = (Qg,%g, —¢, 0%) be an automaton with an
OEp ~”C Qg X Qg on G. For any automaton 7 = (Qr, X7, =7
(7)-> s.t.(TZg N ZIT) = @, if for any xg,yc € QG and X7, Y1 € QT,
(xg, x7) =5 w}, it holds
o

([xc], x7) —

(v, yr) for some o € g U Zr U {", 77,

S (LyG]s -xT)-

Proof. From the construction of quotient automata, it holds
[x6] 55 [¥6). Thus, in G/~" || T, we have ([xg], xr) = (Iycl, 7).
We then show that this transition will not be eliminated by shaping.

(Case A) o is preemptive. Then ([xg], x7) N (yglsyr) will
trivially not be eliminated by shaping.

(Case B) o is not preemptive. Then (xg, x7) is not preemptive.
Since 2l NZ5 = 0, it follows that neither xg nor xr is preemptive.
From (P2), it follows that [xs] is not preemptive, thus ([xg], x7) is
not preemptive either.

D. Proof of Proposition | (SOEp)

We establish Lemma [5] to imply Proposition F] Note that
Lemma [3] only matches (C2) of reachability consistency. Never-
theless, since SOEp is finer then OEp, a proposition similar to
Proposition [3] will trivially hold, i.e. (C1) is trivially true for SOEp
on any automaton. In this paragraph, = denotes =” and p denotes

p? since we only focus on abstracting 77.

Lemma 5. Let G = (Qg,%g, —g, Q%) be an automaton with an
SOEp ~” € Qg X Q¢ on G. For any automaton T = (Qr, X1, =71
, 0%, if for any xg,yg € Qg and x7,yr € Qr, (xg, xr) =% (6, yr)
for some o € L5 UZr U{T", 77, w}, it holds ([xg], x7) =° ([vs], x1).

Proof. We review Case B in the proof for Lemma [] since this is
the only case which refers to the restriction Z; N £y = 0. Given a
non-preemptive event o, the state (xg, x7) clearly is non- preemptlve

too. This implies xg 7L> From (S2), it follows ([xg], x7) 7L> and,
consequently, ([xg], xr) can not be preemptive since all x; € [x5]
must have the same set of active events. O

	Introduction
	Preliminaries
	Events and languages
	Automata
	Event preemption

	Conflict Preserving Abstraction w.r.t. Preemption
	Abstract non-preemptive silent event
	Abstract preemptive silent event

	Compositional Verification
	Example
	Conclusions and prospects
	References
	Proof of Proposition 1 (Consistency)
	Proof of Proposition 2 (OEn)
	Proof of Proposition 3 (OEp)
	Proof of Proposition 4 (SOEp)

