Fault-Tolerant Supervisory Control

Thomas Moor *

* Lehrstuhl fiir Regelungstechnik
Friedrich-Alexander Universitdt Erlangen-Niirnberg, Germany
(e-mail: Irt@fau.de)

Abstract: A system is fault tolerant if it remains functional after the occurrence of a fault. Given a
plant subject to a fault, fault-tolerant control requires the controller to form a fault tolerant closed-loop
system. For the systematic design of a fault-tolerant controller, typical input data consists of the plant
dynamics including the effect of the faults under consideration and a formal performance requirement
with a possible allowance for degraded performance after the fault. For its obvious practical relevance,
the synthesis of fault-tolerant controllers has received extensive attention in the literature, however, with
a particular focus on continuous-variable systems. This paper provides an overview on the synthesis of
fault-tolerant controllers within the framework of supervisory control to address discrete-event systems
that are adequately represented by regular languages. [Revised version — June 2015]

Keywords: discrete-event systems, supervisory control, fault-tolerant control, passive fault-tolerant
control, active fault-tolerant control, post-fault recovery, fault-hiding approach.

INTRODUCTION

Following the general introduction given in Blanke et al.
(2006), a fault is considered a sudden change in the behaviour
of a system with potentially negative consequences to the over-
all performance regarding predefined objectives. When it comes
to control, the system consists of a plant and a controller. A
common setting here is to require the controller to compensate
the fault to some degree in order to maintain an operational
closed loop and to achieve a possibly degraded but well defined
overall performance. Such a controller is termed fault tolerant.
This paper discusses the synthesis of fault tolerant control for
discrete-event systems that are adequately representable by for-
mal languages.

In contrast to continuous systems, where the sudden change
of behaviour requires a suitable extension of the modelling
framework, discrete-event systems can represent the occurrence
of faults seamlessly. On the other hand, the modelling proce-
dure for typical applications of discrete-event systems is funda-
mentally different, in that the model is derived from a textual
description of the plant and its environment rather than directly
from physical principles. It is therefore not straight forward to
formalise what an acceptable degraded performance may be
for a particular application. Thus, while the above plain human
language definition of fault tolerance applies to both domains,
the challenges in formal methods for verification and synthesis
of fault-tolerance systems differ substantially.

This paper is meant to accompany an invited talk at the 5th
International Workshop on Dependable Control of Discrete-
Event Systems (5th IFAC DCDS 2015), Mexico, to provide
an overview — it does not contain any original contribution.
For a homogeneous and concise notation, a purely language
based framework for the control of discrete-event systems (Sec-
tion 1) is used as a basis to discuss passive fault tolerance
(Section 2), active fault tolerance (Section 3), post-fault recov-
ery (Section 4), and an adaption of the fault-hiding approach
(Section 5), with the overall scope restricted to deterministic

discrete-event systems. Observing applicable constraints, the
paper covers selected approaches provided by the literature, and
the reader is kindly invited to follow the given references for the
more detailed original expositions.

PRELIMINARIES AND NOTATION

This section provides notation and elementary facts on formal
languages as relevant for the present paper. For a general intro-
duction see (Hopcroft and Ullman, 1979), and, for a discrete-
event systems perspective, (Cassandras and Lafortune, 2008).

Let X be a finite alphabet, i.e., a finite set of symbols o € Z. The
Kleene-closure X" is the set of finite strings s = oo, -+ 07,
n € N, o; € X, and the empty string € € ¥*, € ¢ X. The length
of a string s € X" is denoted |s| € Ny, with |¢] = 0. If, for two
strings s, r € X*, there exists 1 € " such that s = rz, we say
r is a prefix of s, and write r < s; if in addition r # s, we say
r is a strict prefix of s and write r < s. The prefix of s € "
with length n € Ny, n < |s], is denoted pre, s. In particular,
pregs = € and prey; s = s. If, for two strings 5,7 € X", there
exists r € £ such that s = rt, we say ¢ is a suffix of s. The suffix
of a string s € X" obtained by deleting the prefix of length n,
n < |s], is denoted suf, s; i.e., s = (pre, s)(suf, s), sufps = s
and sufjy s = €.

A *-language (or short a language) over X is a subset L C X",
Given a language L C X", the equivalence relation [=;] on X" is
defined by s’ [=7]s” if and only if (V1 € £*)[s't € L & 5"t €
L1]. The language L is regular if [=.] has only finitely many
equivalence classes, and, thus is accepted by a finite automaton.

The prefix of a language L C X" is defined by pre L:={r €
¥ |ds € L : r < s}. The prefix operator distributes over
arbitrary unions of languages. However, for the intersection of
two languages L and K, we have pre (L N K) C (pre L)N(pre K).
If equality holds, L and K are said to be non-conflicting. This is
trivially the case for K C L. The prefix operator is also referred
to as the prefix-closure, and, a language L is closed if L = pre L.

A language K is relatively closed w.r.t. Lif K = (pre K)NL. The
intersection pre (K) N L is always relatively closed w.r.t. L. If a
language K is relatively closed w.r.t. a closed language, then K
itself is closed.

For two languages L, M C X*, the concatenation is defined
LM :={st|s € N, t € M}. The concatenation of closed lan-
guages is closed. The relative suffix is defined L/M :={t|3s €
M : st € L}. If L is closed, so is L/M. For two languages
K, M C ¥, K is said to converge asymptotically to M, denoted
by M « K, if for each s € K, there exists an i such that
suf; s € M. This is equivalent to K € X*M. Moreover, K is
said to converge finitely to M, denoted by K < M, if there
is a non-negative integer n such that for each s € K, there
exists an i < n such that suf;s € M. If M < K, the least
possible n is called the convergence time; see also (Willner and
Heymann, 1995). Finite convergence with convergence time n
implies K C (Uj<,X")M. The latter inclusion is also proposed by
Kumar et al. (1993) to define the notion of language stability.

For the observable events £, C X, the natural projection
po: £° — X is defined iteratively: (1) let p,e:=¢€; (2) for
s € X, 0 € X, let po(s0):=(p,s)o if o € &, or, if o ¢ X,
let p,(so):=p,s. The set-valued inverse pg' of p, is defined
by pi'(r):={s € T¥|p,(s) = r} for r € X;. When applied
to languages, the projection distributes over unions, and the
inverse projection distributes over unions and intersections.
The prefix operator commutes with projection and inverse
projection.

The synchronous composition of two languages L; and L, over
Y, and X, respectively, is defined by L; || Lp:=(p;'L;) N
(p3'L»), where p; and p, denote the natural projections from
X =X UZX] to X} and X7, respectively. Here, L; and L, are said
to be non-conflicting, if (pre L;) || (pre L) = pre(L; || Ly).
For X; = %, the synchronous composition amounts to language
intersection. For X£; N X, = (the synchronous composition is
also called the shuffle product.

Given two languages L, K C ¥, and a set of uncontrollable
events X, C X, we say K is controllable w.r.t. L, if (pre K)X,. N
(pre L) € preK. Note that, in contrast to e.g. (Ramadge and
Wonham, 1987) but in compliance with e.g. (Cassandras and
Lafortune, 2008), this variant of controllability does not insist
in K € L. With ¥, C X the set of observable events, we say
K is prefix-normal w.r.t. L (or short normal w.rt. L), if pre K =
(p;'p, pre K) N (pre L). A language K C X" is complete, if for all
s € pre K there exists o € X such that so € pre K. Each of the
properties controllability, normality, completeness, closedness
and relative closedness is retained under arbitrary union: given
a family of languages (K,)4ea, K, € L for all a € A, such that a
particular combination of the mentioned properties is possessed
by each K, then the union K := U,e4 K, possesses the respective
properties, too. Note that closedness and relative closedness are
also retained under arbitrary intersection.

Unless otherwise noted, the alphabets X, X, X, X, and X,
refer to the common partitioning ¥ = T UX, = Z,UX,,
in controllable, uncontrollable, observable and unobservable
events, respectively.

1. SUPERVISORY CONTROL

We revisit the basic control problem studied in supervisory
control theory as introduced by Ramadge and Wonham (1987),
including the further development to account for partial obser-

vation by Lin and Wonham (1988), in a variation that turns out
convenient for the present paper. The following discussion also
includes some comments on how a discrete-event system relates
to the respective physical phenomenon under consideration; see
also (Cassandras and Lafortune, 2008; Wonham, 1999).

§ 1: Modelling

Following the introduction given in Ramadge and Wonham
(1989), we consider phenomena which can be adequately repre-
sented with a discrete state set and piece-wise constant state tra-
jectories. Changes in the value of the state variable are referred
to as transitions. While the state is regarded internal to the phe-
nomenon, individual transitions are labelled with events from
a finite alphabet X to be externally visible when the respective
transition occurs. Thus, an observation of the phenomenon for
some arbitrarily long but finite duration yields a finite sequence
of events, each taking place at a particular instance of physical
time. We restrict attention to phenomena where the physical
timing is regarded irrelevant and where only the order of events
shall be represented by the model. The resulting abstract notion
of time is referred to as logic time, and any possible outcome of
the above observation can be represented as a string s € X
interpreted w.r.t. logic time. To this end, the set L € X of
all possible strings the phenomenon can generate within any
arbitrary finite amount of physical time is regarded a discrete-
event system that models the phenomenon under consideration.
A consequence of this definition is that if the phenomenon
can generate the string s € L then it can also generate any
prefix t < s and, therefore, we have L = pre L. We emphasise
this fact by denoting our model by pre L, referred to as the
local behaviour. This interpretation of a formal language as a
discrete-event system will be refined in due course.

§ 2: Elementary Properties

Informally, a phenomenon possesses a safety property if “some-
thing bad can not happen”. In the proposed modelling frame-
work, this corresponds to a set of bad strings not to be gener-
ated. Using a language E C £* to represent the complement of
the bad strings, the respective safety property can be stated as
set inclusion

pre LC E. (1)

Since the local behaviour on the left-hand side of the inclusion
is prefix closed, E can be substituted by the supremal prefix-
closed sublanguage of E without affecting the imposed con-
straint. In particular, any safety property can be represented by
a prefix-closed upper bound on the local behaviour.

In contrast to safety, a liveness property requires that “some-
thing good will happen”. We recall two liveness properties
commonly discussed in the context of *-languages. A local
behaviour pre L C X does not deadlock, if it can always be
extended by one more event, i.e., if 1

(VsepreL)(doeX)[soeprel]. 2)

To deduce from the above formula a liveness property in the
intended sense, we impose an additional assumption on the
phenomenon: if; at any physical time, the phenomenon can gen-
erate one more event then the phenomenon will generate one
more event. Then, a non-empty local behaviour that does not
deadlock models a phenomenon that generates within infinite

! Technically, Eq. (2) can be rephrased as a prefix-closed upper bound on the
local behaviour, however, in contrast to the situation of safety properties, the
bound here depends on L.

physical time an infinite number of events. Such phenomena
are also referred to as non-terminating processes. >

The second liveness property we recall is parametrised by a
set M C X" of strings to indicate positively distinguished
configurations of the phenomenon, with task completion as
the most common interpretation. Here, we refer to M as the
accepted behaviour. We say that pre L C X" does not livelock
wrt. M, if 3

(\/sepreL)(HteZ*)[steMﬂpreL], 3)

i.e., if there is the persistent possibility to attain an accepted
string. To obtain a liveness property in the sense of the intended
interpretation, we assume that: if, at any physical time when no
accepted string is generated, the phenomenon has the chance to
generate an accepted string, then it will eventually do so. With
this assumption, non-empty local behaviours that do not live-
lock model phenomena that will within infinite physical time
generate a monotone sequence of accepted strings, which is
bounded in the case of termination and unbounded otherwise. A
phenomenon that does not livelock w.r.t. an accepted behaviour
can be modelled as a single language L C T with associated
local behaviour pre L and associated accepted behaviour L. To
indicate this interpretation of a language we will use the termi-
nology of a discrete-event system L C £*. This is the perspective
we take for the remainder of this paper.

Remark. For a phenomenon that does deadlock or livelock w.r.t.
some accepted behaviour, the locking can be made explicit
by adding a distinguished event and by extending the local
behaviour to generate this event in the situation of a lock. With
this transformation, the phenomenon can again be formally
modelled as a discrete-event system L C X*. In subsequent
analysis tasks and synthesis tasks, the distinguished event needs
to be considered accordingly; e.g., for controller synthesis
as discussed in the following sections, the blocking event is
flagged uncontrollable and a language inclusion specification
must be put in place to require that the controller prevents
any occurrence of the blocking event in the formal closed-
loop behaviour. Thus, when applied to the actual phenomenon,
configurations that could possibly block will not be reached.

§ 3: System Composition

When a phenomenon is composed from multiple components,
one seeks to systematically construct an overall model from
individual models. For discrete-event systems, it is common to
consider the composition by synchronisation of shared events;
i.e., an event can only occur at an instance of physical time
if it complies with the event sequence generated so far w.r.t.
the local behaviour of each individual component. Thus, when
the components are modelled by two prefix-closed languages
L, C ¥} and L, C X7, the parallel composition

L:=Ly || Lo:=(py'L1) N (p3'L2), “4)

is an adequate model of the overall phenomenon. Applying
the same formula to the general case of not-closed languages

2 For non-terminating processes, the local behaviour can alternatively be
represented by the topologically closed w-language lim pre L, i.e., the set of
all infinite strings with all prefixes in pre L; see also Ramadge (1989).

3 Technically, Eq. (3) is equivalent to pre L C pre (M N pre L), which is again
a prefix-closed upper bound that depends on L.

4 1In the absence livelocks and deadlocks, the phenomenon can be alternatively
represented by an w-language, namely the set lim L of infinite strings with
infinitely many prefixes in L. Technically, and in contrast to lim pre L, the limit
lim L is in general not topologically closed. This has relevant implications to
synthesis problems that explicitly or implicitly refer to the latter limit.

amounts to the requirement that accepted configurations are
attained simultaneously by all components. Depending on the
interpretation of liveness w.r.t. the underlying phenomena this
implication may or may not be applicable. Alternatively, one
can compose separate models for the local behaviour and the
accepted behaviour and merge them according to the above
remark. Conflicts are then left to be resolved at a later stage,
e.g., by designing a suitable controller.

§ 4: Closed-Loop Configuration

For the purpose of control, the alphabet is composed as a
disjoint union of controllable events and uncontrollable events,
ie, X = £, UZX,. To this end, we consider the plant to be
given as a discrete-event system L C X°. We assume, that
the underlying phenomenon is equipped with some interface
to disable any controllable event at any time. In the original
literature (Ramadge and Wonham, 1987, 1989), the controller
is represented as a causal feedback map f: pre L — T with
the set of control-patterns I :={y|X,. € y C X}. There, f(s) is
the set of events enabled by the controller after the plant has
generated s and until the next event is generated. Note that any
assumptions imposed on the phenomenon regarding liveness
must comply with the proposed mechanism of control.

In order to account for situations where not every event is
reported to the controller, Lin and Wonham (1988) distinguish
observable events and unobservable events, i.e., X = T, UX,,,
and require the controller to apply consistent control patterns
after the generation of strings that can not be distinguished by
observation. Formally, this amounts to the condition f(s’) =
f(s”) for any pair of strings s’, s” € X* with p,s” = p,s’.
As it turns out, the general situation of partial-observation adds
substantial complexity to controller synthesis problems; see
also Cho and Marcus (1989); Yin and Lafortune (2014). For
the following, we pragmatically restrict attention to the less
involved case X, C X, i.e., we assume that the controller can
not disable unobservable events.

In this paper, we represent f as a language H and interpret
supervision as a form of system composition. To parallel the
setting of non-blocking supervisory control under partial ob-
servation in (Lin and Wonham, 1988), we impose the following
conditions on H. °

Definition 1. Given an alphabet with the common partition £ =
Y. UZ, = X, UZ,,, alanguage H is an admissible controller
for the plant L C X°, if

(HO) H is prefix-closed,

(H1) HX,, C H,

(H2) H = p;'p,H.

(H3) (pre L) N (pre H) is complete, and

(H4) L and H are non-conflicting.]

In the above setting, we interpret K. :=(pre L) N (pre H) as the
local closed-loop behaviour obtained by restricting the occur-
rence of events to those that are simultaneously enabled by both
the plant and the controller. Then, K := K, . N L amounts to the

5 In the original literature, the plant is represented by an automaton, and,
thus, can itself be blocking. For this case we need to apply the transformation
proposed in the remark of the preceding section. Another subtle difference is
that we require the closed loop not only not to live-lock but also not to dead
lock. This is motivated by non-terminating processes and is convenient for the
discussion of diagnosis later in this paper.

closed-loop behaviour accepted by the plant. In particular, (H4)
implies Kj,. € preK, i.e., the closed loop does not livelock
w.r.t. Land K = LNH is a discrete-event system that models the
synchronous composition of plant and controller. The following
theorem relates the slightly different setting used in the present
paper to results from the literature and establishes a character-
isation of achievable closed-loop behaviour under admissible
control.

Theorem 2. Consider an alphabet with the common partition
2=3 UX,=X,UX,, with X, C %,. Foraplant L C £* and
an admissible controller H C X" let K = L N H. Then

(KO) K is relatively prefix-closed w.r.t. L,
(K1) K is controllable w.r.t. L,

(K2) K prefix-normal w.r.t. L, and

(K3) K is complete.

Moreover, if L # 0 # H, then K # (). Vice versa, if K satisfies
(K0)-(K3), then there exists an admissible controller H such
that K = L N H. Moreover, if K # 0, then H # 0.

Proof. [Outline] Part 1, “trivial cases”. H = () implies K = 0,
which in turn satisfies (K0)—(K3). Likewise, for K =) we can
choose H = 0 to satisfy (HO)-(H4). Exclude trivial cases from
now on. Part 2, “(H*)=(K*)”. (KO0) is a consequence of (HO).
(H4) amounts to pre K = (pre L) N (pre H). This can be used
to establish (K1), (K2) and (K3) from (H1), (H2) and (H3),
respectively. Part 3, “(K*)=(H*)”, is established constructively
with the candidate H :=p;'p,((pre K)Zy). O

§ 5: Controller Synthesis

Given a plant L C X" and an upper bound language inclusion
specification E C L, the common controller synthesis prob-
lem is to establish an admissible controller H C X" such that
K = LN H < E. By (KO) this is the case if and only if
the local behaviour pre K is a subset of the supremal closed
sublanguage of E, i.e., the language inclusion specification
can be equivalently stated as a prefix-closed upper bound on
the local closed-loop behaviour, and is, in this sense, a safety
specification. A core observation from the literature is that the
closed-loop properties are retained under arbitrary union; e.g.
(Ramadge and Wonham, 1989) for controllability, (Lin and
Wonham, 1988) for normality, and (Kumar et al., 1992) for
completeness. Thus, there exists a unique supremal achievable
closed-loop behaviour KT that satisfies all of the above prop-
erties and the language inclusion specification KT € E C L.
Clearly, if and only if the supremum K' is non-empty, we
can extract a corresponding controller H # () with a non-
empty closed-loop behaviour. Thus, for practical applications
the synthesis problem is solved by procedures that compute
a finite representation of K'. For regular parameters, various
such procedures that address specific combinations of closed-
loop properties have been proposed, see e.g. (Cho and Marcus,
1989; Brandt et al., 1990; Kumar et al., 1992) as well as (Moor
et al., 2012) for the specific situation of the present paper. ©

% As a follow-up to the previous notes on non-terminating processes, and
depending on the application at hand, it may turn out appropriate to interpret
the closed loop w.r.t. an infinite logical-time axis and consider the limits on
the respective *-languages. However, for this interpretation, the assumption
E C L amounts to a relevant loss of generality. Technically, it implies that
the limit lim E is relatively closed w.r.t. to the limit lim L. For more detailed
considerations in this regard, see (Thistle and Wonham, 1994; Thistle and
Lamouchi, 2009) and also Moor et al. (2012).

2. NAIVE FAULT-TOLERANT CONTROL

Compliant with (Blanke et al., 2006), a fault is considered a
sudden change in the behaviour of the plant. Thus, to verify
or synthesise fault-tolerance in a model based approach, one
needs to extend the so called nominal model of the fault-free
behaviour to a model that accommodates the occurrence of the
fault regarding its possible past (optionally interpreted as the
cause of the fault) and the possible future (commonly inter-
preted as the effect of the fault). Typically, one may accept
degraded performance after the occurrence of the fault and
ideally one will insist in nominal performance up to the occur-
rence of the fault. Design options include to seek for a single
controller that uniformly operates the plant including the fault
to enforce the overall control objective (referred to as passive
fault-tolerant control), or to explicitly detect the fault and then
to switch to a prepared controller that guarantees for acceptable
post fault behaviour (referred to as active fault-tolerant con-
trol). Both approaches amount to a switched plant model, while
the second approach in addition introduces a switched overall
controller.

For continuous-signal systems, both types of switching consti-
tute a potential challenge in verification and synthesis of fault
tolerant controllers since they require a careful review of the
classical frameworks used for the nominal design. For a fault-
tolerant design, one needs to account for the newly introduced
discontinuities when the fault switches between plant models,
and, for active fault-tolerant control, when diagnosis schemes
detect faults and dynamically trigger discontinuities by switch-
ing controllers.

In contrast, discrete-event systems by nature can model sudden
changes in the behaviour seamlessly. Thus, one may approach
verification and synthesis of fault-tolerant controllers by using
the same framework as used for the nominal design. The addi-
tional effort required to achieve fault-tolerance then appears at
the modelling stage. Moreover, the distinction between active
and passive fault-tolerant control may affect solution strategies,
but, as long as the modelling paradigms are unchanged, active
and passive fault-tolerance is not expected to affect the achiev-
able over-all closed-loop behaviour. Following Wittmann et al.
(2012), we outline on how to organise verification and synthesis
of fault-tolerance in this naive approach.

We begin with a nominal closed-loop configuration, consisting
of a nominal alphabet denoted X, with the common partition-
ing, a nominal plant model L, C X;, a nominal language
inclusion specification E, € L, and an admissible nominal
controller H, C X, according to the requirements (HO)—(H4)
with resulting closed-loop system K, C E, C L, .

To accommodate for the fault, we extend the alphabet by a
distinguished event f ¢ X, i.e., X; :=%, U{f}, and define the
degraded plant behaviour Ly C % to specify all possible pasts
that may trigger the fault and all possible post-fault behaviour.
Thus, we may assume that

preLyNE, Cprel,, (5)
LN =0. (6)

The natural candidate for a fault-accommodating model is the
conjunction

Lf = Ln U Ld N (7)
and the above assumptions Eq. (5) and (6) imply

preL; = (preL,) U (Z:fZf N preLy), (8)
Ly =L, U (((preL)fEH) N Ly), 9

in support of our construction.

From the controller perspective, the fault event f is regarded
uncontrollable. In general, f is also regarded unobservable, how-
ever, depending on the level of abstraction one also encoun-
ters applications where the plant instantly reports any fault by
built-in diagnosis. A fault-accommodating language inclusion
specification can be set up from the same pattern as the fault-
accommodating plant model, i.e.

E; =E,UE,, (10)

subject to assumptions obtained by uniform substitution from
Egs. (5) and (6). Here, the implied consequences ensure that the
specification E; up to the occurrence of the fault is not stricter
than the the nominal specification E|,.

Once fault-accommodating models L; and E; are provided,
options are to verify an existing controller H (e.g. the nominal
controller H,)) regarding fault tolerance or to synthesise a fault-
tolerant controller H; from scratch. Both problems can be
solved by the procedures from the nominal control problem,
but now applied to the input data L; and E;. Note that, even if
H; and H, are considered minimal restrictive, the conditions
Eq. (5) and (6) do not imply that the pre-fault behaviour of
the closed loop matches the nominal closed-loop behaviour.
This is because a given plant L; implies that a fault-tolerant
controller avoids those pre-fault configurations, from which, in
the case of the fault, the post-fault requirements imposed by E;
can not be achieved. Obviously, the nominal controller is not
subject to this constraint and therefore leads to a potentially less
restrictive pre-fault behaviour. This can be regarded inadequate
depending on the application at hand. However, such a situation
is considered a consequence of the respective input data L,
and E;, but not a fundamental limitation of the presented naive
approach to fault-tolerant control.

Remark. In the first instance, the presented approach is moti-
vated to handle persistent faults, i.e., faults that can only oc-
cur once with certain performance degradation accepted from
thereon. There is also the option to have a plant in which the
fault can occur more than once. This feature is relevant for
plants that shall be controlled to perfect recovery in the sense
of eventually matching the pre-fault behaviour, including the
possibility of the occurrence of the fault; see also Section 4.

Remark. Throughout this text we will continue to consider
only one distinguished fault event. In the first instance, this
is motivated by a concise notation. As long as no explicit
diagnosis is required, and as long as the fault is persistent, there
is no practical benefit in distinguishing multiple fault events.

The interpretation of the presented naive approach as passive
fault-tolerant control is obvious. In general, there is the po-
tential to produce practical solutions even if the fault is not
diagnosable. This is expected to be the case if those causes of
a fault (in the sense of pre-fault behaviours), that by their post-
fault behaviour conflict with applicable conditions for diagnos-
ability, can be prevented by a more restrictive control of the pre-
fault behaviour. However, provided that the fault is diagnosable,
an interpretation as active fault-tolerant control can be based on
the composition of a diagnoser and H;: any first transition to
an f-certain state can be regarded as a switching to a post-fault
controller; see also Section 3.

3. ACTIVE FAULT-TOLERANT CONTROL

Referring to Blanke et al. (2006), active fault-tolerant control is
achieved by two measures applied in the context of the nominal
closed-loop configuration: first, a diagnosis mechanism is used
in order to detect the fault; and, second, after the fault has been
detected, the nominal controller is deactivated and an alterna-
tive controller is activated to continue to operate the plant. The
general benefit of this approach is that the pre-fault behaviour
of the closed loop exactly matches the nominal closed-loop be-
haviour, including heuristic optimisations not formally captured
by the nominal control objectives. The crucial challenge of this
approach is to detect the fault early enough in order have the
chance to achieve prescribed post-fault performance objectives.
In the following we report on an adaption of active fault-tolerant
control to discrete-event systems originally developed in (Paoli
and Lafortune, 2005; Paoli et al., 2008, 2011) and resemble
a simplified variant of the core concepts in the context of the
present paper.

At the first stage (A), the cited references begin with an automa-
ton representation of the fault-accommodating model L; = L, U
Ly C X¢ under nominal control H,, i.e., H, is admissible w.r.t.
L, and formally extended not to disable the fault event f. For a
concise notation, (pre L;) N H, is assumed not to deadlock. The
authors then require a diagnoser to report any fault before the
system violates a prescribed post-fault safety specification. The
latter is given as a set of strings ¥ C X that must not occur
as a substring of the local post-fault behaviour. The existence
of a diagnoser suitable for this task is discussed in (Paoli and
Lafortune, 2005) and characterised by a property called safe
diagnosability, derived as an extension from the general study
of discrete-event system diagnosis by Sampath et al. (1995).

Definition 3. Given the fault-accommodating plant L; C Xf
with nominal controller H, let L = (pre L;) N H, and define
the diagnosis condition D[w] in terms of w € Zf to be true if
LN (p;'pow) C ZafEy. Then L is safe diagnosable if there exists
a non-negative integer k, such that

(VseLn &), re @) Z)steprely = D[st]], (11)
and if, in the above equation, the shortest prefix of a t € (Z,)~

that satisfies D[st] for a given s does not contain an illegal
substring from P. O

The consequence of the second requirement is that the occur-
rence of the fault will be diagnosed before an illegal string is
generated in the post-fault behaviour. Note that the diagnosis
stage (A) is stated in terms of the local behaviour pre L; and
thus cannot incorporate liveness properties other than not to
deadlock. This technically justifies the requirement of a uni-
form upper bound w.r.t. logic time until a fault is diagnosed. To
this end, denote T C (pre L;) N H,, the set of strings at which a
corresponding diagnoser first enters an f-certain state.

At the second stage (B), addressing the time after the fault
has been diagnosed, the plant must still be controlled not to
exhibit a string that has a substring within the illegal set Y. The
existence of an appropriate control scheme for this purpose is
characterised by a property called safe controllability, proposed
in (Paoli et al., 2008). Note that, safe controllability technically
gives priority to stopping the plant in order to avoid illegal sub-
strings, even if this causes a deadlock. This can be accounted
for in the subsequent design stage (C).

For the final design stage (C), post-fault-detection controllers
are synthesised to take over the plant after diagnosis of the fault,
i.e., when the plant has entered a string in 7. The synthesis
of these controllers is performed on a strategically constructed
formal plant model using the common control objectives ob-
servability and controllability. The purpose of the strategically
constructed formal plant model is that the switching to one
of the post-fault-detection controllers is consistent with the
observations available to both, the switching mechanism and
the respective controllers. Thus, in the reading of the present
paper and under the assumption that £. C X, one may accu-
mulate the post-fault detection controllers to a formal language
H; to take over the plant from H, once the observation has
passed T, :=p,T. This amounts to the following fault-tolerant
controller:

H; :=p{ro € p,H, | (prer)N T, = 0}

U py'{ro e poHyl (prer) NT, # 0} U {e}. (12)

An alternative approach to design this over-all control scheme
is to use a post-fault language inclusion specification E4 such
that

preT C E; CXf — I fE W, , (13)
to solve the synthesis problem with input data L; and E;, and
to verify whether or not the resulting controller H; qualifies for
the extraction of H; in compliance with the switching defined
by Eq. (12). If E; only imposes restrictions on the behaviour
after the fault can be detected, a minimal restrictive solution
H; should include T in the local closed-loop behaviour, and,
thus, should turn out admissible. If explicit diagnosis is not
required, one may skip the computation of 7" and directly use
an application specific post-fault specification E; with

(preL,) N H, C E, CSf — SiEiWs; . (14)

If the subsequent verification step fails, one concludes that
either the safe diagnosability condition is not satisfied or that
the post-fault performance objective can not be achieved.

4. POST-FAULT RECOVERY

The fault-tolerant controller design strategies presented so far
do recover after the fault in that their post-fault behaviour
satisfies a prescribed language inclusion specification. More
explicit approaches to recovery have been proposed by relating
the long-term behaviour after the fault with the either the
nominal behaviour before the fault or the nominal specification.
In the following we report on a framework developed in (Wen
et al., 2008b,a, 2014) which addresses recovery in terms of
language convergence and variations thereof (Kumar et al.,
1993; Willner and Heymann, 1995).

We begin our discussion with an adaption of the notion of weak
fault tolerance from (Wen et al., 2008b).”

Definition 4. A fault-accommodating behaviour K; C Xf, with
nominal part K, C K; N Xy, is weakly fault-tolerant if

K;/(preK,) & K;/(preK; —preK,), 5)
(pre Ky)/(pre K,) < (pre K;)/(pre Ky —preK,). (16)
O

7 The cited literature gives a more general definition in terms of possibly
blocking automata and derives the respective variant of Egs. (15) and (16) as
equivalent characterisation; see (Wen et al., 2008b) Definition 3 and Theorem 3.

By the right-hand side, the condition addresses strings with a
past that exit the nominal behaviour by the fault event. The
left-hand side requires the existence of a future that matches
the future of some string within the nominal behaviour. Here,
the left-hand side terms account for models in which the fault
can occur more than once. For persistent faults and if the
convergence time is of no concern, one may use K, < K; /(Z;f)
as an alternative condition.

The above notion of fault tolerance imposes a restriction on
the local post fault behaviour and, in this sense, it is a safety
specification. For the recovery of liveness properties, Wen et al.
(2014) propose the following stronger condition. 3

Definition 5. A fault-accommodating behaviour K; C Xf, with
nominal part K, C K; N X is fault tolerant, if there exist a
non-negative integer k, such that for all s,z € Z§, [f| > k, with

sepreK; —preK,, steprekK; 17)

there exists u € pre K, and v < 1, |v| < k, and
K;/sv=K;/u (18)
O

It is the equality in the second equation, by which the above
notion of fault tolerance requires not only the recovery of safety
properties but also the recovery of liveness properties.

For an overall design, that task is to find an admissible con-
troller H; that enforces a language inclusion specification and
fault tolerance in the sense of Definition 5 with K, :=L, N H;
and K; := L;NH;. Regarding optimality, a nearby objective is to
maximise the pre-fault behaviour and to minimise the recovery
time. However, Wen et al. (2014) demonstrate by example,
that a maximal achievable pre-fault behaviour in general does
not exist. Therefore, the cited literature further discusses the
synthesis problem in terms of automata representations, where,
beginning with a realisation of the relevant behaviours and the
language inclusion specification, only subautomata are consid-
ered. With this restriction, an algorithmic solution is derived for
the case that all events are observable.

An alternative approach for recovery is proposed by Siilek
and Schmidt (2014), where the authors impose three closed-
loop requirements, one for the pre-fault behaviour, one for a
transitional phase after the fault, and a language convergence
specification for the long-term post-fault behaviour. A problem
statement in the setting here is given as follows. °

Definition 6. Given a fault-accommodating plant L; C Xf, with
nominal part L, C Ly N X, an admissible controller H is fault
tolerant if it guarantees the following properties for the closed
loop K; = L; N H for the specification parameters E, C X,
E, C 3fand E; CXf:

(P1) K; NZ. CE,,
(P2) for all s € L; N ZifE; there is a partition s =

uviuavy - - - ugvift such that u = ujuy - - -y € pre E, and
v=vivy---wt € Ey,

(P3) E; < K; /(Zi). o

8 We refer to (Wen et al., 2014), Definition 2, for the above characterisation in
terms of languages. For an automata based formulation see (Wen et al., 2008b),
Definition 1. We also note that the original literature is technically more general,
in that it explicitly accounts for systems that deadlock.

9 The original literature uses automata representations for the plant model and,
thus, accounts for a blocking plant. Moreover, multiple fault events and marking
supervisors are addressed.

The second condition requires that if the fault happens at all,
then some fraction of the pre-fault string can be reinterpreted
according to the specification E4, while the remaining frac-
tion complies with E . Here, E; is used to require applica-
tion specific re-initialisation for post-fault operation. Siilek and
Schmidt (2014) give a complete and sound algorithm to synthe-
sise fault tolerant controllers in the sense of Definition 6 for the
case that all events are observable. It is also demonstrated how
the algorithm can be used for a subsequent repair procedure to
retain the nominal specification.

Remark. As a general comment on the concept of language
convergence and the above variations, note that they impose
a uniform bound on the number of events allowed until satis-
factory behaviour is attained. This can be regarded inadequate
for phenomena where the effect of a fault only shows after a
non-uniformly bounded logic-time duration. This is, e.g., ex-
pected whenever the overall plant is built from independent
components which possess independent liveness properties.
However, when dropping the uniform bound, convergence of
x-languages becomes in general a to weak requirement (e.g.
consider a language K = (M)*; without a uniform bound, any
x-language converges to K). In such situations, the discussion
requires explicit or implicit reference to the corresponding w-
languages. For example, one may require lim L C lim(X"K) for
anon-uniformly bounded convergence. This is again a language
inclusion requirement and, if all events are observable, it can be
addressed with the approach proposed by Thistle and Wonham
(1994). A related problem of state attraction under partial ob-
servation is studied in Schmidt and Breindl (2014).

5. FAULT-HIDING APPROACH

With the design strategy of fault hiding, one begins with a
given fault-accommodating model L; = L, U Ly € % and a
nominal controller H, C ;. One then seeks a reconfiguration
mechanism, that, once the fault occurred, re-interprets the con-
trol action executed by the nominal controller to operate the
actual plant L;. In turn, the feedback provided by the plant L;
is re-interpreted to generate feedback accepted by the nominal
controller. The reconfiguration mechanism is meant to pretend
nominal plant behaviour to the nominal controller while impos-
ing fault-tolerant control to the actual plant. In particular, the
nominal controller remains permanently active in the overall
closed-loop configuration. This addresses situations where the
nominal controller not only satisfies a formal control objective
but also has been optimised by heuristic methods and/or human
expertise. This approach is well developed within the context
of continuous control; see e.g. (Richter, 2011).

For discrete-event systems, a fault-hiding approach is provided
by Wittmann et al. (2013). The synthesis of a reconfigura-
tion mechanism is re-phrased as the computation of an overall
closed-loop behaviour K; for the plant L; and the inclusion
specification E; = E, U Ej, such that a corresponding admis-
sible controller H; can be composed from the reconfiguration
mechanism R and the nominal controller H,,. Sufficient condi-
tions are obtained as given below, where i: X; — X, encodes a
bijective translation from events in X to distinct virtual events
inX,X, NZ =01

10 The actual setting in the cited literature is more general in that it explicitly
accounts for high-level events and low-level events for component interconnec-
tion in a hierarchical control architecture. While Wittmann et al. (2013) applies

Definition 7. Given the models Ly C Xf and L, C %, and the
specifications E, C X, and E; C Xf, construct the supremal
nominal controller H] C X and denote its virtualisation by
HI = h(HZ) C X5. The following conditions are imposed on the
a candidate closed loop K C Lf||HVT:

(M1) K is controllable w.r.t. L; || HVT and the uncontrollable
events X, UA(Z,)

(M2) preK is prefix-normal w.r.t. pre (L; || H)),
(M3) K is relatively closed w.r.t. L; || HI
(M4) K is complete,

(M5) K is weakly sensor-event consistent, i.e.,
(Vs € pre K)[(py)h(Zye) N (preh(L,)) # 0
= (X - hE))hE,)NpreK 0]
(M6) K operates HI within A(L,), i.e., K C p;' pre i(L,).
(M7) K satisfies the inclusion specification K C E;.]

If the conditions are satisfied, then the reconfiguration dynam-
ics can be extracted from K by projection R = p, K. Results
reported in Wittmann et al. (2013) include admissibility of
R||h(H,) w.r.t. Ly for any solution H, to the nominal control
problem as well as additional admissibility criteria regarding
the interconnections of the three individual components L;,
R and H,. An according synthesis procedure is elaborated in
Wittmann (2014). Since the above properties (M1)—(M7) do not
depend on the actual nominal controller H,, the latter does not
need to be known in form of a formal language model. This is
of a particular interest when the nominal controller is given in
terms of a verbal specification and/or hand-written PLC code.

SUMMARY AND FURTHER READING

This paper provides a concise overview to the synthesis of fault-
tolerant discrete-event systems in a language based framework.
Individual approaches have been selected to cover active and
passive fault tolerant control, as well as post-fault recovery
and fault-hiding. Definitions from the original literature have
been restated in a homogeneous notation, however, with some
simplification and in a less general form. For the precise tech-
nical background the reader is kindly referred to the respective
literature.

To complement the references provided in this paper, we con-
clude by accounting for related work, that did not quite fit
the framework chosen for this overview. Rohloff (2005) ad-
dresses the specific situation of faulty sensors and proposes
to represent the effect of a fault be an according variation
of the projection operator chosen for observations. The cited
reference gives detailed account on modelling and verification,
as well as an outline of possible synthesis procedures. Nke
and Lunze (2011a,b) discuss fault-tolerant control for automata
with inputs and outputs. The contributions include a systematic
approach to model sensor and actuator faults as well as a syn-
thesis procedure for reconfiguration to achieve fault tolerance
w.r.t. prescribed performance objectives. Siilek and Schmidt
(2013) consider faults with the effect, that certain events can no
longer occur. The discussion includes a synthesis procedure to
achieve fault tolerance in the closed-loop configuration. Moor
and Schmidt (2015) address fault-tolerance in a hierarchical
control architecture. In such a setting, a lower-bound language

to prefix-closed languages only, additional conditions for the general case of
not prefix-closed languages are developed in Wittmann (2014).

inclusion specification can have priority over an upper bound,
since there is the option to pass on undesired behaviour for
compensation further up in the hierarchy.

In the opinion of the author, additional insight could be gained
by future research to address fault-tolerance for languages of
infinite strings, since this is a natural interpretation domain for
non-terminating processes.

REFERENCES

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., and
Schroder, J. (2006). Diagnosis and Fault-Tolerant Control.
Springer.

Brandt, R.D., Garg, V., Kumar, R., Lin, F,, Marcus, S.I., and
Wonham, W.M. (1990). Formulas for calculating supremal
controllable and normal sublanguages. Systems and Control
Letters, 15, 111-117.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, second edition.

Cho, H. and Marcus, S.I. (1989). On supremal languages of
classes of sublanguages that arise in supervisor synthesis
problems with partial observation. Maths. of Control, Signals
& Systems, 2, 47-69.

Hopcroft, J.LE. and Ullman, J.D. (1979). Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley, Reading.

Kumar, R., Garg, V., and Marcus, S.I. (1992). On supervisory
control of sequential behaviors. IEEE Transactions on Auto-
matic Control, 37, 1978-1985.

Kumar, R., Garg, V., and Marcus, S. (1993). Language stabil-
ity and stabilizability of discrete event dynamical systems.
SIAM J. Control and Optimization, 31, 1294—1320.

Lin, F. and Wonham, W.M. (1988). On observability of
discrete-event systems. Information Sciences, 44, 173-198.

Moor, T., Baier, C., Yoo, T.S., Lin, F., and Lafortune, S. (2012).
On the computation of supremal sublanguages relevant to
supervisory control. Workshop on Discrete Event Systems
(WODES), 175-180.

Moor, T. and Schmidt, K. (2015). Fault-tolerant control
of discrete-event systems with lower-bound specifications.
Workshop on Dependable Control of Discrete Systems
(DCDS).

Nke, Y. and Lunze, J. (2011a). A fault modeling approach
for input/output automata. In Proceedings of the 18th IFAC
World Congress. Italy.

Nke, Y. and Lunze, J. (2011b). Online control reconfigura-
tion for a faulty manufacturing process. In 3rd Interna-
tional Workshop on Dependable Control of Discrete Systems
(DCDS). Germany.

Paoli, A. and Lafortune, S. (2005). Safe diagnosability for fault-
tolerant supervision of discrete-event systems. Automatica,
41(8), 1335-1347.

Paoli, A., Sartini, M., and Lafortune, S. (2008). A fault
tolerant architecture for supervisory control of discrete event
systems. Proceedings of the 17th IFAC world congress,
6542—6547.

Paoli, A., Sartini, M., and Lafortune, S. (2011). Active fault
tolerant control of discrete event systems using online diag-
nostics. Automatica, 47(4), 639-649.

Ramadge, P.J. (1989). Some tractable supervisory control prob-
lems for discrete-event systems modeled by biichi automata.
IEEE Transactions on Automatic Control, 34, 10-19.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. SIAM J. Control and
Optimization, 25, 206-230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77, 81-98.

Richter, J.H. (2011). Reconfigurable control of nonlinear
dynamical systems: fault hiding approach. LNCIS 408.
Springer-Verlag.

Rohloff, K.R. (2005). Sensor failure tolerant supervisory con-
trol. In IEEE Proceedings of the 44th International Confer-
ence on Decision and Control, 3493-3498.

Sampath, M., Sengupeta, R., , Lafortune, S., and Sinnamo-
hideen, K. (1995). Diagnosability of discrete-event systems.
IEEE Transactions on Automatic Control, 40:9, 1555-1575.

Schmidt, K. and Breindl, C. (2014). A framework for state
attraction of discrete event systems under partial observation.
Information Sciences, 281, 265-280.

Siilek, A.N. and Schmidt, K.W. (2013). Computation of fault-
tolerant supervisors for discrete event systems. In 4th IFAC
Workshop on Dependable Control of Discrete Systems, 115—
120.

Siilek, A.N. and Schmidt, K.W. (2014). Computation of su-
pervisors for fault-recovery and repair for discrete event sys-
tems. In Workshop on Discrete Event Systems, 428—438.

Thistle, J.G. and Lamouchi, H.M. (2009). Effective control syn-
thesis for partially observed discrete-event systems. STAM J.
Control and Optimization, 48, 1858—1887.

Thistle, J.G. and Wonham, W.M. (1994). Supervision of infinite
behavior of discrete event systems. SIAM J. Control and
Optimization, 32, 1098—1113.

Wen, Q., Kumar, R., and Huang, J. (2008a). Synthesis of
optimal fault-tolerant supervisor for discrete event systems.
American Control Conference, 1172—1177.

Wen, Q., Kumar, R., and Huang, J. (2014). Framework for
optimal fault-tolerant control synthesis: maximize prefault
while minimize post-fault behaviors for discrete event sys-
tems. IEEE Transactions on Systems, Man and Cybernetics:
Systems, 44, 1056—-1066.

Wen, Q., Kumar, R., Huang, J., and Liu, H. (2008b). A frame-
work for fault-tolerant control for discrete event systems.
IEEE Transactions on Automatic Control, 53, 1839—-1849.

Willner, Y. and Heymann, M. (1995). Language convergence in
controlled discrete-event systems. Automatic Control, IEEE
Transactions on, 40(4), 616-627.

Wittmann, T. (2014). Zur Methodik und Anwendung
fehlerverdeckender Steuerungsrekonfiguration fiir —eine
Klasse ereignisdiskreter Systeme. Dissertation, Friedrich-
Alexander Universitit Erlangen-Niirnberg.

Wittmann, T., Richter, J., and Moor, T. (2012). Fault-
tolerant control of discrete event systems based on fault-
accommodating models. Preprints of the 8th IFAC Sympo-
sium on Fault Detection, Supervision and Safety of Technical
Processes (SAFEPROCESS), 854—-859.

Wittmann, T., Richter, J., and Moor, T. (2013). Fault-hiding
control reconfiguration for a class of discrete-event sys-
tems. Workshop on Dependable Control of Discrete Systems
(DCDS).

Wonham, W.M. (1999). Notes on control of discrete event
systems. Technical report, Department of Electrical & Com-
puter Engineering, University of Toronto.

Yin, X. and Lafortune, S. (2014). A general approach for
synthesis of supervisors for partially-observed discrete-event
systems. Proc. 19th IFAC World Congress, 2422-2428.

