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"When the only tool you own is a hammer,

every problem begins to resemble a nail."

Abraham Maslow (1908-1970)
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Chapter 1

Introduction

Over the past years several new methods for the control of discrete event systems based

on the framework provided by P.J. Ramadge und W.M. Wonham [18] and the supervisory

control theory [2] have been developed.

Up to now, most of the research efforts in this context have been spent on reducing the

complexity of the supervisor synthesis, which becomes enormous when dealing with dis-

crete event systems of relevant sizes.

Modular and decentralized approaches like [8, 9, 19, 6, 11, 10, 17] focus on describing the

discrete event system as a compound of subsystems of manageable size with the aim to

distribute the supervisor synthesis to decentralized supervisors or to avoid the composition

of the subsystems. A second promising method is to postpone the supervisor synthesis to

a superordinate level containing a less complex image of the detailed system model, see

for example [7, 20, 3, 15, 5, 16].

In [13], a new approach for the control of a class of decentralized discrete event systems

has been presented that combines the hierarchical and decentralized method. Certain

system properties, local nonblocking and marked state acceptance, have been identified

that guarantee consistency of the hierarchical architecture and nonblocking behavior of the

controlled system.

This above-mentioned approach is extended and modified in this thesis. The restrictive

local nonblocking condition is replaced by the so-called single-event controllability which

covers praxis relevant cases. Also, a modeling procedure is developed which makes it pos-

sible to refine detailed low-level plant models by additional information for the abstraction to

a higher level. Furthermore a particular supervisor implementation guarantees nonblock-

ing behavior of the closed loop control system. The modeling and design method allows



2

for automatic PLC code generation.

The outline of this work is as follows. An introduction to control of discrete event systems

is given in Chapter 2, where the framework of the supervisory control theory is explained.

Chapter 3 deals with the embedding of the supervisory control theory in a hierarchical

control architecture and moreover the application to decentralized discrete event systems.

In Chapter 4, an extension and modification of the hierarchical and decentralized control

system presented in [13] is introduced in the form of a decentralized multi-level hierarchy.

The notion of refinement automata is presented, which extend the decentralized system

models by refinement events that for example abstract a complex task to be reported to the

next level in the hierarchy. Furthermore, the property of local nonblocking is replaced by

the practically relevant condition of single event controllability in combination with a mod-

ified supervisor implementation in the low-level. The modified and extended approach is

applied to an automated manufacturing example, which is the Fischertechnik model of an

industrial production process controlled by a standard programmable logic controller (PLC)

in Chapter 5. The thesis concludes with a prospect to possible future research activities.
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Chapter 2

Basics of Control of Discrete Event

Systems

The following chapter will provide a brief introduction to discrete event systems (DES) and

the supervisory control theory (SCT). More detailed explanations are given in [4].

2.1 Discrete Event Systems

In [18] W. M Wonham has given a framework for modeling the behavior of DES using finite

automata. For this work, only deterministic finite automata are relevant.

Definition 2.1.1 (Deterministic Finite Automaton) A deterministic finite automaton is a

5-Tupel G := (X ,Σ,δ,x0,Xm) consisting of

• X : the finite set of states

• Σ: the finite set of events (also referred to as alphabet) including the empty event ε

• δ : X ×Σ → X the partial transition function 1

• x0: the initial state 2

• Xm ⊆ X : the set of marked states

1As G is deterministic, the function δ is unique.
2As G is deterministc, there exists only one initial state.



2.1. DISCRETE EVENT SYSTEMS 4

Any concatenation of events is called a string. The set of all strings over Σ is defined

as Σ∗. The transition function δ is partial as it is defined for a subset of Σ only at any

state x ∈ X . Given x1,x2 ∈ X and σ ∈ Σ, δ(x1,σ)! says that this transition is defined, and

δ(x1,σ) = x2 describes the transition from one state x1 ∈ X to its successor state x2 ∈ X

driven by an event σ ∈ Σ.

δ can be extended to a partial transition function on X × Σ∗ by the following recursive

definition: δ(x,ε) := x and δ(x,sσ) := δ(δ(x,s),σ), whenever there exists x′ = δ(x,s) and

δ(x′,σ) is defined.

The set of all events possible in a state x is called active event set

Λ(x) := {σ ∈ Σ | δ(x,σ)!}. Figure 2.1 shows the graph of an example automaton

with X = {1,2,3,4}, Σ = {σ1,σ2,σ3,σ4}, δ(1,σ1) = 2, δ(2,σ2) = 3, δ(2,σ3) = 4,

δ(4,σ4) = 1, x0 = 1 and Xm = {3}.

Figure 2.1: Example of a finite automaton

A finite automaton is the Generator of the language L(G) and marks the language Lm(G)

as described in the subsequent definition.

Definition 2.1.2 (Generated and Marked Language) For a given automaton

G = (X ,Σ,δ,x0,Xm) the generated language is defined as

L(G) := {s ∈ Σ∗ | δ(x0,s)!}

and the marked language is

Lm(G) := {s ∈ Σ∗ | δ(x0,s) ∈ Xm}.

So L(G) contains all strings which can occur in G, and Lm(G) contains the strings that

lead to a marked state in G.

The description of languages by finite automata is not unique, i.e. the same language can

be marked by a variety of different automata. The automaton that marks a given language
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Lm with a minimum number of states is called the canonical recognizer of Lm.3 For the rest

of this work the notation "finite automaton" shall be restricted to the canonical recognizer

of the corresponding marked language.

The example automaton of Figure 2.1 marks Lm(G) = {σ1(σ3σ4σ1)
∗σ2}.

The language H that contains all strings of H and all prefixes of these strings is called the

prefix-closure of H:

H := {s ∈ Σ∗ | ∃t ∈ (Σ)∗ such that st ∈ H}

Every language generated by a finite automaton is prefix-closed, i. e. L(G) = L(G).

If there exist strings in L(G) that are not prefix of a marked string, the generator of L(G)

is called blocking because there are states in G from which there is no path leading to a

marked state. An automaton is nonblocking if it generates a language L(G) that satisfies

the following condition.

L(G) = Lm(G)

This means that every string in L(G) is prefix of a string in Lm(G), i.e. a string that leads

to a marked state.

An important tool for the manipulation of languages is the natural projection.

Definition 2.1.3 (Natural Projection) Given Σi ⊆ Σ, the natural projection pi : Σ∗ → Σ∗
i is

defined by the following recursion:

1. pi(ε) := ε

2. pi(sσ) :=

{

pi(s)σ if σ ∈ Σi

pi(s) otherwise.
Where σ ∈ Σ and s ∈ Σ∗.

The projection can be applied to all strings of a language K ∈ Σ∗. Thus the above definition

can be extended to languages as follows:

pi(K) := {t ∈ Σ∗
i : ∃s ∈ K with pi(s) = t}

The projection pi(K) of a language K ⊆ Σ∗ reduces all its strings to strings contained

in Σ∗
i . Accordingly the inverse projection p−1

i of a string t ∈ Σ∗
i returns all strings whose

projection is given by the string t.

3Note that this automaton always exists.[18]
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Definition 2.1.4 (Inverse Projection) Given Σi ⊆ Σ, t ∈ Σ∗
i , the inverse projection p−1

i :

Σ∗
i → 2Σ∗

is defined :

p−1
i (t) := {s ∈ Σ∗ | pi(s) = t}

So the inverse projection of a language Ki ⊆ Σ∗
i is

p−1
i (Ki) := {s ∈ Σ∗ : ∃t ∈ Ki with pi(s) = t}

It is a useful and necessary procedure in the modelling process to regard systems as

a structure composed of functional modules (subsystems) of manageable size and then

describe the concurrent behavior of these modules by composing them correctly. To de-

scribe the concurrent behavior of two DES we use the synchronous product 4 of two finite

automata.

Definition 2.1.5 (Synchronous Product of Finite Automata) The synchronous product

of two given finite automata G1 = (X1,Σ1,δ1,x0,1,Xm,1) and G2 = (X2,Σ2,δ2,x0,2,Xm,2) is

G1||G2 := (X1 ×X2,Σ1 ∪Σ2,δ,(x0,1,x0,2),Xm,1×Xm,2)

with

• X1×X2 := {(x1 ∈ X1,x2 ∈ X2) : ∃s ∈ (Σ1 ∪Σ2)
∗ | δ((x01,x02),s) = (x1,x2)}

• δ((x1,x2),σ) :=























(δ1(x1,σ),δ2(x2,σ)) if σ ∈ Λ1(x1)∩Λ2(x2)

(δ1(x1),x2) if σ ∈ Λ1(x1)−Σ2

(x1,δ2(x2)) if σ ∈ Λ2(x2)−Σ1

undefined else

• Xm1×Xm2 := {(x1,x2) ∈ X1×X2 | x1 ∈ X1m ∧ x2 ∈ X2m}

This means that a shared event can happen at a state of the resulting automaton only if it

is in the active event set of both of the respective states of G1 and G2 (synchronization),

while the rest of events can happen whenever they are generated by G1 or G2. A state of

the resulting automaton is marked only if both respective states of G1 and G2 are marked.

The language generated by the synchronous product of two automata L(G1||G2) is the

synchronous product of the generated languages L(G1)||L(G2).

4also referred to as parallel composition
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Definition 2.1.6 (Synchronous Product of Languages) Given Σ = Σ1 ∪ Σ2, pi : Σ∗ →

Σ∗
1, p2 : Σ∗ → Σ∗

2 the synchronous product of two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 is:

L1||L2 := p−1
1 (L1)∩ p−1

2 (L2)

The intersection in Definition 2.1.6 means that two given automata are synchronized by

shared events Σshared = Σ1 ∩Σ2, while the rest of events is generated asynchronously,

which is caused by the inverse projections.

The following section will briefly describe how a DES described by a finite automaton can

be controlled in accordance with a given specification.

2.2 Supervisory Control Theory

The idea of the supervisory control theory (SCT) is to reduce the uncontrolled behavior of

a plant G so that the resulting closed-loop behavior satisfies a specification E given as a

language or its generator. This is done by a supervisor S that observes events generated

by the plant and prevents certain events from occuring.

Figure 2.2: Plant G controlled by supervisor S

The event set Σ of the plant is therefore divided into two disjoint subsets: controllable events

Σc, those that can be prevented from occuring (e.g. actuator signals), and uncontrollable

events Σuc that cannot be prevented by the supervisor (e.g. sensor signals).

Σ = Σc ∪Σuc

The supervisor is a map of all strings that can happen in G (which is the language gener-

ated by G) to the events allowed by S after occurence of these strings:

S : L(G) → Γ
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where Γ ⊆ 2Σ is the set of all control patterns γ, Σuc ⊆ γ ⊆ Σ, and S(s) ⊆ Σ denotes the

set of events enabled by S after the occurence of the string s. A supervisor is admissible

if it prevents only controllable events and allows uncontrollable events whenever they are

possible in G. By supervisory control the language L(G) is reduced to a sublanguage

L(S/G)5. A sublanguage K of L(G) that can be achieved by an admissible supervisor is

said to be controllable with respect to L(G).

Definition 2.2.1 (Controllability) [18] A language K is controllable with respect to L(G)

and Σuc if

KΣuc ∩L(G) ⊆ K

This means that any prefix s of K extended with an uncontrollable event that is possible

after s in L(G) is still prefix of K, i.e. an uncontrollable event possible in L(G) is never

prevented in K. The set of all controllable sublanguages of L(G) is denoted by C (L(G)).

C (L(G)) := {H ⊆ L(G) | HΣuc ∩L(G) ⊆ H}

The definition of controllability can be extended by the introduction of forcible events. If an

uncontrollable event σuc can happen in a state of the plant (think of a sensor signal), but

it is granted that a second event σ f in the same state can generally happen before the

respective uncontrollable event, then this second event is forcible. Thus a supervisor is still

admissible if it prevents σuc by forcing σ f . With the partition of the event set to forcible and

unforcible events Σ = Σ f ∪Σu f (Σ f and Σu f are disjoint), definition 2.2.1 can be extended

as follows.

Definition 2.2.2 (Extended Controllability) Given Σuc, f := Σuc ∩Σ f and Σuc,u f := Σuc ∩

Σu f , a language K is extended controllable with respect to L(G) and Σuc if:

• KΣuc, f ∩L(G) ⊆ K

• ∀s ∈ K, ∀σuc,u f : if sσuc,u f ∈ L(G) :

(sσuc,u f ∩L(G) ∈ K)∨ (∃σ f ∈ Σ f such that sσ f ∩L(G) ∈ K)

This definition of controllability shall be used for the rest of this work. As a consequence,

the set of all controllable sublanguages of L(G) is redefined as

C (L(G)) = {H ⊆ L(G) | H is extended controllable with respect to L(G)}

5S/G can be read as "S controlling G"
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For a given specification language E the supremal controllable sublanguage is the minimal

restrictive behavior, which can be achieved by an admissible supervisor.

Definition 2.2.3 (Supremal Controllable Sublanguage) The supremal controllable sub-

language of E with respect to L(G) is

κL(G)(E) := ∪{K ∈ C (L(G)) | K ⊆ E}

So κL(G)(E) is the union of all controllable sublanguages of L(G) that do not violate

the specification E.6 A minimal restrictive supervisor can be derived from a recognizer

of κL(G)(E).

For nonblocking control, the following additional condition for the closed-loop behavior is

necessary.

Definition 2.2.4 (Lm(G)-Closure) A language K is Lm(G)-closed if

K = K∩Lm(G)

This means that every string in K is prefix of a string in Lm(G). The set of all Lm(G)-closed

languages is denoted by FLm(G).

The conditions for the existence of an admissible and nonblocking supervisor are given in

the following theorem [2].

Theorem 2.2.1 (Nonblocking controllability Theorem) Let G be a DES with Σuc ⊆ Σ
and a sublanguage K ⊆ Lm(G) and K 6= /0. A nonblocking supervisor with Lm(S/G) = K

and L(S/G) = K exists iff

1. K is controllable

2. K is Lm(G)-closed

From the above conditions, algorithms have been derived to compute a minimal restric-

tive nonblocking supervisor for a plant and a given specification. While the plant can be

described by modules of manageable size, the remaining problem is the explosion of the

number of states of the entire plant, which can grow exponentially when composing the

modules.

One way of dealing with that problem is to reduce the complexity of supervisor synthesis

6Also note that this supremum always exists as controllability is closed under union.
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by distributing the control problem to several specifications and several respective super-

visors that control the monolithic plant in parallel. In this case, called modular control of

DES, the controlled plants have to be nonconflicting to ensure that the concurrent control

by all supervisors does not cause a blocking.[4].

The computational complexity can also be reduced by avoiding the parallel composition

of all modules and instead computing several supervisors, each controlling only a part of

the system, which consists of only a small number of modules. This approach is called

decentralized control of DES. Also in this case, conflicting behavior of the controlled parts

of the plant has to be avoided. Additionally, decentralized supervisory control might not be

minimal restrictive because of controllability conflicts.[8]

A further approach is to postpone the composition of subsystems to a higher level with

abstracted and less complex models of the subsystems. We then speak of hierarchical

control of DES. It has to be ensured that supervisory control of the high-level is transferred

correctly to the low-level. One condition guaranteeing this requirement is hierarchical con-

sistency.

This work considers a combination of the last two approaches, which will be described in

the following chapter.
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Chapter 3

Hierarchical Control of Decentralized

Discrete Event Systems

In this chapter, a new approach for hierarchical control for structural dezentralized DES by

Dipl.-Ing. Klaus Schmidt presented in [13] will be explained.

The first section describes the abstraction of a plant to an abstracted high-level, for which

a high-level supervisor is developed along with the correct low-level implementation of the

high-level supervisor.

An approach to control of structural decentralized DES is explained in section 3.2, followed

by the combination of both, the hierarchical and the decentralized method in Section 3.3.

3.1 Hierarchical Control of DES

The basic idea of a hierarchical approach to control of discrete event systems is to intro-

duce a control structure that consists of several hierarchical levels in order to reduce the

overall complexity of control design.

3.1.1 Hierarchical Supervisor Implementation

The standard scheme for the hierarchical control of DES was introduced in [20] and is

shown in Figure 3.1.
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Figure 3.1: Scheme for hierarchical control of DES

G is abstracted to a less complex high-level model Ghi which is driven only by relevant

events generated by G and reported via In f lohi. A high-level supervisor observes the

signals In f hi in Ghi. As Ghi is just an image of the plant G, the control action of Shi is not

imposed directly on Ghi via the virtual signal path Conhi but on G via SLo. The original

detailed plant model G is controlled by a low-level supervisor Slo that observes events

In f lo generated by G and imposes control on G via Conlo. Usually, the forward signals

Comhilo and Conlo are designated as "command and control", while the feedback paths

In f lohi and In f hi are referred to as "report and advise".

The abstraction of G to a high-level model Ghi is defined as follows.

Definition 3.1.1 (Hierarchical Abstraction) Given a DES G = (X ,Σ,δ,x0,Xm) and the

set of high-level events Σhi ⊆ Σ, a hierarchical abstraction is the tupel (G,θhi,Ghi).

The reporter map θ : Σ∗ → (Σhi)∗ is defined as

1. θ(ε) = ε

2. θ(sσ) =

{

θ(s) or

θ(s)σhi

where s ∈ Σ∗,σ ∈ Σ and σhi ∈ Σhi.

The map of the low-level language is the high-level language denoted by Lhi := θ(L(G)).

The high-level marking is given by a regular language Lhi
m ⊆ Lhi.

Accordingly, the high-level plant Ghi is the canonical recognizer that generates L(Ghi) =

Lhi and marks Lm(Ghi) = Lhi
m .
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According to [14, 13], from now on the reporter map is implemented as the natural projec-

tion of Definition 2.1.3 to high-level strings.

θ := phi, phi : Σ∗ → (Σhi)∗

The set of high-level events is partitioned into controllable and uncontrollable events Σhi =

Σhi
c ∪Σhi

uc which are disjoint Σhi
c ∩Σhi

uc = /0.

With the above notations a hierarchical control system can be formally defined.

Definition 3.1.2 (Hierarchical Control System) A hierarchical control system (HCS) is a

structure (G, phi, Ghi, Shi, Slo) for which the following properties hold:

• High-level control patterns: Γhi := {γ | Σhi
u ⊆ γ ⊆ Σhi}

• High-level supervisor: Shi : Lhi → Γhi

• Low-level supervisor: Slo : L(G) → Γ

• Validity of Slo:

phi(L(Slo/G)) ⊆ L(Shi/Ghi)

i.e. Slo does not permit behavior that is not allowed by Shi.

With the conventional procedures described in Chapter 2 and a given Lm-closed specifi-

cation Ehi ∈ FLhi
m

, a nonblocking high-level supervisor can now be synthesized. L(Shi/Ghi)

represents the desired high-level closed-loop behavior that would result if Shi could control

Ghi directly via Conhi.

The main step in hierarchical control of DES is to implement the control actions of Shi im-

posed on Slo such that Slo is valid according to Definition 3.1.2 and nonblocking. This task

is called the hierarchical control problem.

Definition 3.1.3 (Hierarchical Control Problem) Given (G, phi, Ghi, Shi), find a valid low-

level supervisor Slo such that the closed-loop behavior L(Slo/G) of the hierarchical control

system is nonblocking.

To find such a nonblocking low-level supervisor, the validity condition of Definition 3.1.2 is

not sufficient, as it might end up with a strict subset relation phi(L(Slo/G)) ⊂ L(Shi/Ghi),

which means e.g. that nonempty low-level controlled behavior can not be guaranteed. A

way to avoid that problem is to restrict the validity condition to hierarchical consistency.
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Definition 3.1.4 (Hierarchical Consistency) A hierarchical control system (G, phi, Ghi,

Shi) is hierarchically consistent if it meets the following condition:

phi(L(Slo/G)) = L(Shi/Ghi)

This means that the control action on Ghi imposed indirectly via Comhilo, Conlo and In f lohi

exactly complies with the virtual control action of Shi via Conhi. So hierarchical consistency

is a powerful tool to show that the low-level controlled behavior is nonblocking.

A hierarchically consistent low-level implementation Slo is the standard supervisor imple-

mentation presented in [14] and [13].1

Definition 3.1.5 (Standard Supervisor Implementation) Given a hierarchical control

system according to Definition 3.1.2, a standard supervisor implementation is

Slo(s) := Shi(phi(s))∪ (Σ−Σhi), ∀s ∈ L(G)

This implementation rule means that the low-level implementation of Shi can disable high-

level events only, while low-level events Σ−Σhi are always enabled.

However, the low-level closed-loop behavior L(Slo/G) might still be blocking. This is be-

cause in L(Slo/G) there might exist low-level strings s ∈ (Σ−Σhi)∗ that can neither be

extended to a string ending with a high-level event nor to a string contained in Lm(G), i.e.

there exist blockings that are not "noticed" by Ghi. In the subsequent section, properties of

the plant G are identified that guarantee nonblocking behavior under control of Slo.[13]

3.1.2 Properties of the low-level plant

Before defining the properties of the low-level plant it is useful to introduce some definitions

concerning the behavior of the low-level plant G.

A particular set of low-level strings that correspond to high-level strings is the set of entry

strings.

Definition 3.1.6 (Entry Strings) Given shi ∈ Lhi, the set of entry strings of shi is defined

as

Len,shi := {s ∈ L(G) | phi(s) = shi ∧@s′ < s such that phi(s′) = shi}

1Remember that the reporter map θ is implemented as the natural projection to high-level events phi.
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Let σhi ∈ Σhi be the last event of shi, then Len,shi consists of all low-level strings correspond-

ing to shi that end with the event σhi, i.e. these low-level strings do not have a prefix with

the same high-level projection shi.

The set of exit strings of shi contains all low-level strings corresponding to shi that can be

extended with a next high-level event.

Definition 3.1.7 (Exit Strings) Given shi ∈ Lhi, the set of exit strings of shi is defined as

Lshi,ex := {s ∈ L(G) | phi(s) = shi ∧∃σhi ∈ Σhi such that sσhi ∈ L(G)}

The following language is introduced to collect all strings of low-level events starting from

an exit string and possibly ending with a high-level event.

Definition 3.1.8 (Local exit string extensions) For s ∈ Lshi,ex, the set of local exit string

extensions is

Ls,shi := {uσ | suσ ∈ L(G) ∧ phi(su) = s ∧ σ ∈ Σ} ⊆ Σ∗

So this language contains all low-level strings starting from an exit string s with phi(s) = shi

which can be extended with an event that is possibly a high-level event.

The system property defined next deals with local blocking. For the explanation of local

blocking consider the example of a low-level plant G in Figure 3.2 with Σ = {a,b,x,y} and

Σhi = {x,y}.

Figure 3.2: locally blocking low-level plant G

The language generated by G is L(G) = {a,ab,ax,aby}. The abstraction of G to the high-

level shown in Figure 3.3 generates the language Lhi(Ghi) = phi(L(G)) = {x,y}.
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Figure 3.3: high-level abstraction of G

The set of exit strings for shi = ε is Lε,ex = {a,ab}. If y is disabled by a high-level supervisor,

then x can happen instead in Ghi. But as Slo has to enable all low-level events, string ab is

allowed in G which can not be extended by x. This is called a local blocking.

This problem never occurs, if all exit strings belonging to a high-level string shi can always

be extended with any event that is possible after shi in the high-level.

The following definition provides a system property that deals with the problem described

above.

Definition 3.1.9 (Locally Nonblocking Hierarchical Abstraction)

Let (G, phi,Ghi) be a a hierarchical abstraction. The high-level string shi ∈ Lhi
m is said to be

locally nonblocking if

∀s ∈ L(G) with phi(s) = shi and ∀σ ∈ Σhi(shi) with phi(s)σ ∈ Lhi
m :

∃uσ ∈ (Σ−Σhi)∗ such that suσσ ∈ L(G)

(G, phi,Ghi) is locally nonblocking if the above condition holds ∀shi ∈ Lhi
m .

So all strings s in the low-level which project to shi can always be extended with local

strings u leading to any high-level event possible in the high-level after shi. While in the

antecendent example all exit strings have to be considered, the above definition generally

refers to all strings s ∈ L(G).

The subsequent condition is introduced to preserve a consistent marking when abstracting

G to the high-level. Therefore consider the example plant G of Figure 3.4 with the set of

high-level events Σhi = {x,y}.
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(a) G

(b) Ghi

Figure 3.4: Non marked state accepting abstraction

While in the high-level Ghi = phi(G) the event x leads to a marked state, in G after the

occurence of string xa a marked state is never reached. This problem is avoided, if all exit

strings of shi = x have a marked predecessor string which projects to the same high-level

string.[13]

Definition 3.1.10 (Marked State Acceptance)

Let (G, phi,Ghi) be a hierarchical abstraction. (G, phi,Ghi) is marked state accepting if

∀shi
m ∈ Lhi

m ,∀s ∈ Lshi
m ,ex : ∃s′ ≤ s with phi(s′) = shi

m and s′ ∈ Lm

This means that every exit string corresponding to a marked high-level string has a marked

prefix with the same projection to the high-level, i.e. it has passed a marked state.

Given a hierarchical abstraction that is locally nonblocking and marked state accepting, it

can be shown that the following lemma is valid.[13]

Lemma 3.1.1 Let (G, phi,Ghi) be a hierarchical abstraction with s ∈ L and shi ∈ Lhi. If

(G, phi,Ghi) is locally nonblocking and marked state accepting, then it meets the following

property:

∀t ∈ (Σhi)∗ with shit ∈ Lhi : ∃u ∈ Σ∗ such that su ∈ L(G)∧ phi(u) = t

This means if a successor string t of shi is possible in the high-level Ghi, then it always can

be implemented in the low-level G after the respective string s.

With that result one can verify the following theorem.
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Theorem 3.1.1 Let (G, phi,Ghi,Shi,Slo) be a hierarchical control system with a hierarchi-

cal abstraction (G, phi,Ghi) that is locally nonblocking and marked state accepting and a

standard supervisor implementation Slo.

Then the hierarchical control system is hierarchically consistent and solves the hierarchical

control problem, and the controlled low-level behavior is nonblocking.[13]

The hierarchical abstraction of a low-level plant can reduce the complexity of supervisor

synthesis as the complexity of plant G is reduced to a less complex high-level plant. But

it does not take into account the state explosion when the modules of a system of praxis

relevant size are composed to a monolithic plant G at the low-level. We will see that if the

hierarchical approach is applied to a decentralized control system, the composition can be

postponed to the high-level and moreover the complexity of high-level supervisor synthesis

can be reduced by additional local supervisors.

In the following section, the control of decentralized DES will be explained, before the

hierarchical method and the decentralized method are combined in Section 3.3.

3.2 Control of Structural Decentralized DES

The structure of subsystems that is object of decentralized control is called a decentralized

control system, which is defined as follows.

Definition 3.2.1 (Decentralized control system) A decentralized control system (DCS)

is composed of subsystems Gi, i = 1,2, . . . ,n with the respective event sets Σi. Each pair

of subsystems Gi and G j is synchronized by shared events, if Σi∩Σ j 6= /0. The composition

to the entire plant is given by G = ||ni=1Gi. The event set of G results in Σ :=
� n

i=1 Σi and

is partitioned into controllable and uncontrollable events Σ = Σc∪̇Σuc. Consequently, the

controllable and uncontrollable individual event sets are Σi,c := Σi ∩Σc and Σi ∩Σuc. For

brevity and convenience, the following notation is introduced:

L(Gi) := Li, Lm(Gi) := Li,m

Given local specifications Ei ∈ FLi,m ⊆ Σ∗
i , i = 1, . . . ,n each subsystem Gi is controlled by

a local supervisor Si, as shown in Figure 3.5.[14]
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Figure 3.5: Decentralized control structure

With the local behavior of each controlled subsystem L(Si/Gi) = κLi(Ei), the controlled

behavior of the global system results in

||ni=1L(Si/Gi) =
n�

i=1

(pi)
−1(κLi(Ei))∩L

The main task of decentralized control is to guarantee that this behavior is nonblocking

and complies with the minimally restrictive behavior that could be achieved by a monolithic

approach of Chapter 2. The global formulation of the local specifications Ei is given by

E = � n
i=1 p−1(Ei)∩L, with the natural projection pi : Σ → Σi. So the behavior that would

result from control by a monolithic supervisor is L(S/G) = κL(E).

The compliance of the decentralized approach with the monolithic approach can be

denoted by the following conditions [9]:

(1) � n
i=1(pi)

−1(κLi(Ei)) = κL(E)

(2) pi(κL(E)) is nonblocking with respect to Li,m.

The first condition says that there is no loss of optimality compared to the global supervisor

synthesis, while condition number two means that nonblocking control of each subsystem

is also nonblocking with respect to all remaining subsystems.

One way to fulfill these conditions is to guarantee the following properties concerning the

structure of the subsystems.

The first property is required to avoid controllability conflicts when applying decentralized



3.2. CONTROL OF STRUCTURAL DECENTRALIZED DES 20

control. This is the case, when a local supervisor disables uncontrollable behavior of the

respective subsystem that can never happen because of the synchronization with the re-

maining subsystems, which means the loss of minimal restriction.

Definition 3.2.2 (Mutual Controllability) Given a decentralized control system of defini-

tion 3.2.1 and the natural projection pi j
i : (Σi ∪Σ j)

∗ → Σ∗
i , two local languages Li and L j

are said to be mutually controllable if

Li(Σ j,uc ∩Σi)∩ pi j
i ((pi j

j )−1(L j)) ⊆ Li

The decentralized control system is mutually controllable, if the above property holds

∀i, j = 1,2, . . . ,n ; i 6= j.

For understanding the meaning of this property, first we concentrate on the expression

pi j
i ((pi j

j )−1(L j)). The inverse projection takes into account that events that are in Σi −Σ j

are generated in Gi asynchronously from G j. The projection to events of Σi returns the

behavior of G j that is relevant for Gi. So mutual controllability says that Li is controllable

with respect to the behavior of G j as seen from Gi.

The next property guarantees that that one subsystem never causes blocking in any of the

remaining subsystems.

Definition 3.2.3 (Shared Event Marking) Given a decentralized control system of defini-

tion 3.2.1, the property of shared event marking is defined as follows.

Σ∗
i (Σi ∩Σ j)∩Li,m ⊆ Li,m(Σi ∩Σ j), ∀i, j = 1,2, . . . ,n ; i 6= j

This means that in all subsystems Gi, shared events are generated in marked states only,

which means that blocking can never be caused by the concurrent behavior of all subsys-

tems.

In [9] it is shown that a decentralized control system with the above properties fulfills con-

ditions (1) and (2) and therefore decentralized control can be applied without loss of opti-

mality and without blocking.

The cost of this approach is that shared event marking requires that every task of each sub-

system can be completed independently from the remaining subsystems, which means a

considerable restriction to the models of the subsystems.

In the following section we will see that guaranteeing shared event marking is not neces-

sary, if this approach is combined with hierarchical control, because then blocking caused

by the concurrent behavior of the controlled subsystems is avoided by a nonblocking high-

level supervisor.
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3.3 Hierarchical Control of Structural Decentralized DES

The combination of the hierarchical control structure described in Section 3.1 and the

decentralized approach explained in Section 3.2 was presented in [13] and is shown in the

subsequent figure.

Figure 3.6: Hierarchical and decentralized control scheme

Each subsystem of the decentralized plant G is controlled by a local supervisor Si, i =

1,2, . . . ,n. The locally controlled concurrent behaviour of the subsystems is then ab-

stracted to a high-level plant Ghi, for which a high-level supervisor Shi is designed. The

control action of Shi is imposed on each locally controlled subsystem by the low-level su-

pervisors Slo
i .

This hierarchical and decentralized control architecture is defined as follows [13].

Definition 3.3.1 A Hierarchical and Decentralized Control System (HDCS) is a structure

that consists of the following components.

• The detailed low-level plant model G is given as a decentralized control system of

definition 3.2.1.

• Low-level controllers Si : Li → Γi, where Γi are the respective control patterns that

achieve locally nonblocking low-level closed-loop languages denoted by2

Lc
i := L(Gc

i ) := L(Si/Gi), Lc
i,m := Lc

i ∩Li,m, Lc := ||ni=1Lc
i , Lc

m := ||ni=1Lc
i,m = Lc∩Lm.

2the index "c" is to be read "controlled".
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Gc = ||ni=1Gc
i is the canonical recognizer of the globally resulting locally controlled

behavior Lc such that Lc = L(Gc), Lc
m = Lm(Gc).

• A hierarchical abstraction (G, phi,Ghi) according to definition 3.1.1, with the reporter

map to the high-level θ := phi, where phi : Σ∗ → (Σhi)∗ is the natural projection to

high-level events.

The set of high-level events contains the set of all shared events
n�

i, j,i 6= j
(Σi ∩Σ j) ⊆ Σhi ⊆ Σ.

The high-level marked language is defined as

Lhi
m := phi(Lc

m), where Lhi
m is regular by construction.

• The high-level supervisor is denoted Shi : Lhi → Γhi with the high-level closed-loop

language L(Shi/Ghi) and a valid low-level supervisor implementation Slo : Lc → Γ
that guarantees phi(L(Slo/Gc)) ⊆ L(Shi/Ghi).

• The decentralized implementation of Slo is given by supervisors Slo
i with

L(Slo
i /Gc

i ) = pi(L(Slo/Gc)).

Since the locally controlled concurrent behavior of all decentralized modules Gc = ||ni=1Gc
i

is abstracted to one monolithic high-level plant Ghi, the following lemma presented in [14]

is the important step concerning reduction of complexity:

Lemma 3.3.1 (Commutativity of Composition and Abstraction) Given a hierarchical

and decentralized control system with the notation Lhi
i := phi(Lc

i ), the high-level closed

and marked languages are

Lhi = phi(||ni=1Lc
i ) = ||ni=1Lhi

i and Lhi
m = phi(||ni=1Lc

i,m) = ||ni=1Lhi
i,m

This lemma says, that the abstraction of the computationally expensive synchronous prod-

uct of the detailed local plants is identical to the less complex synchronous product of the

abstraction of subplants. With that result it is now possible to compute the high-level plant

Ghi and a high-level supervisor Shi as described in Section 3.1 with the standard supervi-

sor implementation Slo.

The main task remaining is to find a correct decentralized implementaion of the low-level

supervisor, such that hierarchical consistency and nonblocking low-level behavior are guar-

anteed.

A given controllable high-level behavior can be implemented by admissible decentralized

supervisors Slo
i , if the languages of the abstracted modules are mutually controllable.
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Definition 3.3.2 (Mutual Controllability, High-Level) Given a hierarchical and decen-

tralized control system, two high-level languages Lhi
i and Lhi

j are said to be mutually con-

trollable if

Lhi
j (Σhi

uc ∩Σi ∩Σ j)∩ p j((phi
i )−1(Lhi

i )) ⊆ Lhi
j

Given mutually controllable high-level languages, the decentralized supervisors can be

implemented as follows.

Definition 3.3.3 (Decentralized Standard Supervisor Implementation) Let H be a hi-

erarchical and decentralized control system with a standard supervisor implementation of

definition 3.1.5.

The decentralized standard supervisor implementation is defined as

Slo
i (pi(s)) := pi(S

lo(s)), i = 1,2, . . . ,n , ∀s ∈ Lhi

This means that the control action of Slo is projected to the local event set Σi of each mod-

ule Gi.

The mutual controllability condition guarantees that the projections of a high-level supervi-

sor to the subsystems are controllable with respect to the respective subsystem.[13]

Lemma 3.3.2 (Projected High-Level Supervisors)

Let H be a hierarchical and decentralized control system as in Definition 3.3.1.

If Lhi
i and Lhi

j are mutually controllable for i, j = 1, . . . ,n, then

∃Shi
i : (Σhi

i )∗ → Γhi
i such that L(Shi

i /Ghi
i ) = pi(L(Shi/Ghi)) ∀i = 1, . . . ,n

One way to show that a hierarchical and decentralized control system with the above de-

centralized supervisor implementation fulfills the properties of hierarchical consistency and

nonblocking behavior, is to make use of a property of many application examples, which

is that a system should always be able to return to a marked state after a task has been

completed. This property results in the circularity of the respective controlled language.

Definition 3.3.4 (Circular Language)

A regular language L ∈ Σ∗ is said to be circular if

∀s ∈ L, ∃σ ∈ Σ such that sσ ∈ L
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For the application example of this work, this property is given by the circular structure

of the system models. However, there are different conditions with which the following

theorem can be proven.

Theorem 3.3.1 ([13]) Let H be a hierarchical and decentralized control system as in Def-

inition 3.3.1 that meets the following conditions:

• All hierarchical abstractions (Gc
i , phi,Ghi

i ), i = 1,2, . . . ,n are marked state accepting

and locally nonblocking.

• The high-level languages Lhi
i , i = 1,2, . . . ,n are mutually controllable.

• All languages pi(L(Shi/Ghi)) are circular.

• For Slo, the standard supervisor implementation of Definition 3.1.5 is chosen, with

the corresponding standard decentralized supervisor implementations Slo
i .

Then H is hierarchically consistent, and the low-level control is nonblocking.

Note that although this approach contains decentralized supervisory control, the property

of shared event marking is no longer required, as nonblocking control of the concurrent

behavior is guaranteed by the high-level supervisor in combination with the aforementioned

structural properties of the system.

However, for larger systems, the composition of all abstracted subsystems to one high-level

plant might still be too expensive. In the following section we will see how this approach

can be extended to a multi-level hierarchy.
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Chapter 4

Modification of the Hierarchical and

Decentralized Approach

In this chapter the approach presented in [13] will be extended to a multi-evel hierarchy

and modified such that a property less restrictive than local nonblocking guarantees hier-

archical consistency and nonblocking behavior of the controlled system.

4.1 Multi-Level Hierarchy

An example of this decentralized multi-level structure with 4 subsystems and 3 levels in the

hierarchy is shown in Figure 4.1. Generally, there is no restriction on the number of levels

and the number of subsystems at each level.
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Figure 4.1: Example of a decentralized 3-level hierarchy

At the lowest level (0), the plant is described by detailed models of subsystems G(0)
i

(i = 1,2,3,4) that are locally controlled by decentralized supervisors S(0)
i .

The locally controlled systems are then refined, i.e. additional events, defined in a

refinement alphabet, are added by composition of the locally controlled plant S(0)
i /G(0)

i

with a refinement automaton R(0)
i . One possible function of a refinement automaton is

identifying unique low-level strings representing a certain task.

The refined system models G(0)
re f ,i = (S(0)

i /G(0)
i )||R(0)

i are abstracted to level 1 by the

natural projection to the set of high-level events Σ(1)
i , which consists of the refinement

alphabet as well as those events out of the respective local event set Σ(0)
i , that are defined

to be high-level events. Arbitrary groups of the abstracted subsystems are then composed

to several modules G(1)
j of level 1, where in this example j = 1,2. For each level-1

subsystem, level-1 supervisors S(1)
i are synthesized. For this abstraction, level 0 is viewed

as the low level, and level 1 represents the high level of the hierarchy.

In a next step, the level-1 system can be considered as a low-level system which shall

be abstracted to a higher level 2. Thus the locally controlled level-1 subsystems are

refined by refinement events and abstracted to level 2, where they are composed to (in

the example case) one level-2 system G(2). The behavior of G(2) is controlled by S(2),

whose decentralized low-level implementations are S(2−1)
1 and S(2−1)

2 . These low-level

implementations are a translation of the abstract control actions of level 2 to detailed
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level-1 control actions for each locally controlled subplant in level 1. So, S(2−1)
1 and S(2−1)

2

restrict the locally controlled behaviors S(1)
1 /G(1)

1 and S(1)
2 /G(1)

2 on level 1.

Analogously, the control action resulting on level 1 is implemented on level 0 by

S(1−0)
i , which additionally restrict the controlled behavior of each local subsystem

S(0)
i /G(0)

i (i = 1, . . . ,4) on level 0.

Note that each pair S(( j+1)− j)
i and G( j)

re f ,i can be interpreted as an interface that translates

detailed strings generated in the lower level to high-level events as well as high-level

control actions to more complex tasks in the lower level. The notion of an interface

connecting two levels is found in several approaches to hierarchical control, see for

example [7].

For convenience and to be able to easily apply the notations of 3.3, we will focus

on a two-level hierarchy with a lower level defined over the event set Σlo and a higher level

defined over Σhi, as for example the part of the system marked by the dark box in Figure

4.1. For the general structure of a two-level hierarchy see Figure 4.2.

Figure 4.2: Two-level hierarchy

This part of two connected levels can be seen as a elementary hierarchical and decen-

tralized control system, the results of which can be transferred to an arbitrary multi-level

hierarchy.1

1For clarity reasons the local high-level subsystems Ghi
i are not shown in Figure 4.1
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At first, we define the resulting hierarchical and decentralized control system, when refine-

ment languages are applied.

Definition 4.1.1 (Extended Hierarchical and Decentralized Control System)

An extended hierarchical and decentralized control system (EHDCS) is a structure that

consists of the following components.

• The detailed low-level plant model Glo over the event set Σlo :=
� n

i=1 Σlo
i is given

as a decentralized control system according to Definition 3.2.1 with a number of

n subsystems Glo
i over the respective event sets Σlo

i , generating the respective

languages Llo
i := L(Glo

i ) and marking Llo
i,m := Lm(Glo

i ). The overall system is de-

fined as Glo := ||ni=1Glo
i over the alphabet Σlo :=

� n
i=1 Σlo

i . The controllable and

uncontrollable events are Σlo
i,c := Σlo

i ∩Σlo
c and Σlo

i,u := Σlo
i ∩Σlo

u , respectively, where

Σlo
c ∪Σlo

u = Σlo and Σlo
c ∩Σlo

u = /0.

• Nonblocking local low-level controllers Slo
i : Llo

i → Γlo
i , where Γlo

i are the respective

control patterns. The resulting low-level closed-loop languages are denoted

Llo,c
i := L(Slo

i /Glo
i )

Llo,c
i,m := Llo,c

i ∩Llo
i,m,

Llo,c := ||ni=1Llo,c
i

Llo,c
m := ||ni=1Llo,c

i,m = Llo,c ∩Llo
m .

Glo,c is the canonical recognizer of the globally resulting locally controlled behavior

such that

Llo,c = L(Glo,c), Llo,c
m = Lm(Glo,c).2

• High-level events Σhi :=
� n

i=1 Σhi
i are introduced, where Σhi

i and Σlo
i are not neces-

sarily disjoint: /0 ⊆ Σlo
i ∩Σhi

i , i.e. low-level events can also be defined as high-level

events. Furthermore, Σre f :=
� n

i=1 Σre f ,i = Σhi−Σlo ⊆ Σhi is the set of all refinement

events, i.e. all refinement events are high-level events. Moreover, all shared events

are high-level events:
� n

j=1,i 6= j(Σlo
i ∩Σlo

j ) ⊆ Σhi
i .

• The refinement automata are denoted Rlo
i . They generate the refinement languages

Klo
re f ,i := L(Rlo

i ) ⊆ (Σlo
i ∪Σre f ,i)

∗ and mark the languages

Klo
re f ,i,m := Lm(Rlo

i ) ⊆ (Σlo
i ∪Σre f ,i)

∗

with the set of refinement events Σre f ,i such that

Llo
re f ,i := Llo,c

i ||Klo
re f ,i,

2Note that by definition Llo,c = Llo,c
m .
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Llo
re f ,i,m := Llo,c

i,m ||Klo
re f ,i,m

are the refined languages. The canonical recognizer of Llo
re f ,i,m is denoted Glo

re f ,i,i.e

L(Glo
re f ,i) = Llo

re f ,i and Lm(Glo
re f ,i) = Llo

re f ,i,m.

• Hierarchical abstractions (Glo
re f ,i, phi,Ghi

i ), with the reporter map to the high-level

θ := phi, where phi : (Σlo ∪Σre f ,i)
∗ → (Σhi)∗ is the natural projection to high-level

events.

The local high-level languages are given by the abstraction of the refined languages:

Lhi
i = L(Ghi

i ) := phi(Llo
re f ,i),

Lhi
i,m = Lm(Ghi

i ) := phi(Llo
re f ,i,m)

• The high-level plant is given by Ghi := ||ni=1Ghi
i , so Lhi := ||ni=1Lhi

i and Lhi
m :=

||ni=1Lhi
i,m. Each pair Ghi

i , Ghi
j of abstracted subsystems is synchronized by shared

events if Σhi
i ∩Σhi

j 6= /0.

• The high-level supervisor is denoted Shi : Lhi → Γhi with the high-level closed-loop

language L(Shi/Ghi) and a valid low-level supervisor implementation Shi−lo : Llo,c →

Γhi−lo with the control pattern Γhi−lo ⊆ 2(Σlo∪Σre f ) has to guarantee that

phi(L(Shi−lo/Glo
re f )) ⊆ L(Shi/Ghi).

• The decentralized implementation of Shi−lo is given by valid supervisors Shi−lo
i .

4.2 Refinement Automata

One modification of the approach described in [13] is the notion of refinement automata,

which are an important tool for the abstraction process. They can be used to identify unique

low-level strings representing a certain detailed task and to introduce refinement events to

report the beginning and the completion of these tasks to the high-level. The refinement

automata have to fulfill the following requirements:

Definition 4.2.1 (Admissible Refinement Automaton) Let Glo be a finite automaton

over the event set Σlo with L(Glo) = Llo ⊆ (Σlo)∗ and Llo
m = Lm(Glo). Furthermore,

let Σhi be the set of high-level events with Σre f ⊆ Σhi. Also let Rlo be an automaton

over the event set (Σlo∪̇Σre f ) generating the language L(Rlo) = Klo
re f ⊆ (Σlo∪̇Σre f )

∗

and marking Lm(Rlo) := Klo
re f ,m. Then the refined languages are Llo

re f = Llo||Klo
re f and

Llo
re f ,m = Llo

m ||Klo
re f ,m.

Rlo is said to be an admissible refinement automaton with respect to Glo, if:
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1. Rlo meets the following structural property:

Let s, s′ ∈Rlo and plo(s) = plo(s′). If ∃u∈ (Σre f )
∗, σuc ∈Σlo

uc such that suσuc ∈Rlo
re f ,

then ∃u′σuc such that s′u′σuc ∈ Rlo
re f .

2. Klo
re f and Klo

re f ,m are not restrictive with respect to Llo and Llo
m .

plo(Llo
re f ) = Llo, plo(Llo

re f ,m) = Llo
m

with the natural projection to low-level events plo : (Σlo∪Σhi)∗ → (Σlo)∗

3. Klo
re f and Klo

re f ,m are consistent with respect to the controllability of low-level events:

(Σlo∪Σre f )
∗Σre f ,cΣ∗

re f Σlo
uc(Σlo ∪Σre f )

∗∩Llo
re f = /0 ,

(Σlo∪Σre f )
∗Σre f ,cΣ∗

re f Σlo
uc(Σlo ∪Σre f )

∗∩Llo
re f ,m = /0

The first requirement means that if one low-level string is represented in Rlo by several

different refined strings, then all uncontrollable events possible after the low-level string

have to be possible in Rlo after these refined strings.

The second requirement says that K lo
re f is not allowed to restrict the behavior of Glo in any

sense.

The third requirement means that all sequences of refinement events containing a control-

lable event must not be followed by an uncontrollable low-level event, such that uncontrol-

lable low-level events can never be disabled by a high-level supervisor disabling a high-

level event. So it is guaranteed that any controllable behavior E lo
re f can be implemented by

an admissible low-level supervisor as stated in the following lemma.

Lemma 4.2.1 (Consistency of Controllability)

Let Glo be a finite automaton and Rlo be a refinement automaton generating K lo
re f with the

refined language Llo
re f as stated in Definition 4.2.1. The requirements on K lo

re f in Defini-

tion 4.2.1 guarantee that any behavior E lo
re f that is controllable with respect to the refined

language Llo
re f can be implemented by an admissible low-level supervisor:

∀E lo
re f ∈ C (Llo

re f ) : plo(E lo
re f ) ∈ C (Llo)

Proof 4.2.1 3

Let s ∈ E lo
re f such that plo(s)σuc ∈ Llo and sσuc /∈ E lo

re f with σuc ∈ Σlo
uc.

Then, because of the first condition in Definition 4.2.1, ∃u ∈ (Σlo
re f )

∗ such that suσuc ∈ Llo
re f .

3The proof is the result of collaborative work with Dipl.Ing. Klaus Schmidt.
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Let u′ ∈ Σlo
re f be the longest extension of s with refinement events, i.e. su′ ∈ E lo

re f and

@su′ ∈ E lo
re f with su′ < su′. Then su′σuc /∈ E lo

re f as plo(su′)σuc ∈ plo(E lo
re f ).

Thus, with u = u′u′′, and as E lo
re f is controllable with respect to Llo

re f , it holds that u′′ = σcũ

with σc ∈ Σre f ,c.

Now, su′σcũσuc ∈ Llo
re f and su′ ∈ E lo

re f and su′σc /∈ E lo
re f .

But as su′σcũσuc ∈ Llo
re f and su′σcũσuc ∈ (Σlo∪Σre f )

∗Σre f ,cΣ∗
re f Σlo

uc(Σlo∪Σre f )
∗, it follows

that (Σlo∪Σre f )
∗Σre f ,cΣ∗

re f Σlo
uc(Σlo∪Σre f )

∗∩Llo
re f 6= /0, which contradicts the third condition

in Definition 4.2.1. Thus plo(E lo
re f ) is controllable with respect to Llo.

A further modification of the approach described in [13] is the relaxation of the property

of local nonblocking of the hierarchically abstracted subsystems in combination with a

low-level supervisor implementation that is different from the standard supervisor imple-

mentation defined in [13].

4.3 Modified Supervisor Implementation

We recall the Definition 3.1.9 of a locally nonblocking hierarchical abstraction.

In many application examples this property can be fulfilled only with restrictive models of

the subplants, as different local extensions of exit strings usually decide on which subse-

quent high-level event is possible. So these alternative local extensions can be seen as

local predecessors for different high-level events.

If local nonblocking is not fulfilled, the problem is to guarantee that two decentralized sub-

systems generate the local predecessors of the same shared event, otherwise blocking is

possible that is not noticed by Ghi. The following figure illustrates a case of local blocking.

(a) G1lo
re f ,1 (b) Glo

re f ,2 (c) Glo
re f ,1||G

lo
re f ,2 (d) Ghi

Figure 4.3: Two subsystems causing local blocking
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The set of high-level events is given by the shared events Σhi = {x,y}. So, if the local

event a is generated in the refined subsystem Gre f ,1 and event b happens in Gre f ,2, the

concurrent behavior Glo
re f = Glo

re f ,1||G
lo
re f ,2 (Figure 4.3 (c)) of both subsystems has a block-

ing state, because the subsystems are not able to execute the same high-level event. This

blocking is not noticed in Ghi = phi(Glo
re f ,1)||p

hi(Glo
re f ,2), i.e. a nonblocking high-level super-

visor Shi does not prevent it. A way to avoid this problem is to design a low-level supervisor

implementation that disables local predecessors of different high-level events.

Because of this, the implementation of a low-level supervisor is modified as follows.

Definition 4.3.1 (Modified Supervisor Implementation) Given an extended hierarchical

control system, the modified supervisor implementation is defined as

L(Shi−lo/Glo
re f ) := κLlo

re f
(Lm(Shi/Ghi)||Lm(Glo

re f ))

The above expression points out, that the controlled high-level behavior can be seen as

a specification for Glo
re f , for which Shi−lo is the nonblocking and admissible supervisor.

With this supervisor implementation, only those exit string extensions in Glo are allowed,

from which one of the high-level events enabled by Shi can be reached, while local strings

leading to disabled high-level events are disabled. In a general EHDCS according to Def-

inition 4.1.1, the low-level consists of several decentralized refined subsystems (as there

are Glo
re f ,1 and Glo

re f ,2 in the above example), to which a decentralized form of the above

supervisor implementation is applied.

Definition 4.3.2 (Decentralized Modified Supervisor) Given an extended hierarchical

control system of Definition 4.1.1, the decentralized modified supervisors are defined as

L(Shi−lo
i /Glo

re f ,i) := κLlo
re f ,i

(pi(Lm(Shi/Ghi))||Lm(Glo
re f ,i))

where pi : (Σlo ∪Σhi)∗ → (Σlo
i ∪Σhi

i )∗ is the natural projection to the event set of each local

subsystem .

The overall behavior of the subsystems controlled by the decentralized modified supervi-

sors is implemented according to the subsequent definition.

Definition 4.3.3 (Decentralized Modified Supervisor Implementation) Given an ex-

tended hierarchical control system of Definition 4.1.1, the decentralized modified super-

visor implementation is defined as

L(Shi−lo/Glo
re f ) = L(Shi/Ghi)

∣

∣

∣

∣

(

||ni=1(L(Shi−lo
i /Glo

re f ,i)
)
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Note that the interaction of the subsystems is coordinated by the high-level. One important

condition in that context is the fact that all shared events are high-level events and thus

can be observed and controlled by Shi.

Considering the example of Figure 4.3, the difference between the standard and modified

supervisor implementation is as follows. Assume a high-level supervisor Shi that disables

the event y, as shown in Figure 4.4 a). As the standard supervisor implementation always

enables all local events, Slo
standard allows the events a,b and x in Glo

re f ,1||G
lo
re f ,2. This control

action causes a blocking, whenever event b has happened (Figure 4.4 b)). Different from

that, the decentralized supervisor Shi−lo
2 disables event b, because after b no high-level

event can be reached in Glo
re f ,2. So the resulting overall low-level supervisor implementation

Shi−lo
modi f ied is nonblocking, see Figure 4.4 (c).

(a) Shi/Ghi (b) Shi−lo
standard/Glo

re f (c) Shi−lo
modi f ied/Glo

re f

Figure 4.4: Standard and modified low-level supervisor implementation

However, if both high-level events x and y are allowed in the high-level, i.e.

Shi−lo
modi f ied/Glo

re f = Glo
re f (Figure 4.3 c)), also the modified supervisor implementation causes

a blocking as local paths leading to different events of the same set of shared events are

still not disabled and thus there remain competitive paths in Glo
re f ,1 and Glo

re f ,2 that block

each other in the synchronized behavior.

For that reason, we introduce an additional property concerning the high-level supervisor.

Definition 4.3.4 (Single Event Control) Given an extended hierarchical and decentral-

ized control system with a modified supervisor implementation as in Definition 4.3.1, single
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event control is defined as follows:

∀shi ∈ L(Shi/Ghi),∀σ ∈ Σhi(shi)∩Σhi
c,i ∩Shi(shi), ∀i = 1,2, . . . ,n :

Shi(shi)∩ (Σhi(shi)−σ)∩Σhi
c,i = /0

This means that after any high-level string, Shi enables at most one controllable high-level

event out of each local alphabet, such that each pair of low-level subplants that share

events agrees on the same shared high-level event. Thus there are no competing paths

that block each other in the concurrent behavior. When considering application examples

like the one of this work, this property is not very restrictive. A possible implementation is

to set priorities of high-level events of one set of shared events, such that if Shi enables a

choice of more than one high-level event, only the event with the highest priority is imple-

mented in the low-level.

A further useful property of the system models is the single event controllability, which says

that low-level strings to different high-level events always begin with a controllable low-level

event, i.e. these strings can always be disabled by a low-level supervisor implementation.

Definition 4.3.5 (Single Event Controllability) Let H be an extended hierarchical and

decentralized control system. For a given high-level string shi ∈ Lhi
i with a controllable

high-level successor event α ∈ Σhi
i (shi)∩Σhi

c,i, the language

Lsen,shi,α := {uσ|u ∈ (Σlo−Σhi)∗∧ senuσ ∈ L(Glo
re f ,i)∧σ ∈ α∪Σhi

uc,i}

is the set of all local extensions of an entry string sen ∈ Len,shi of shi that can be extended

by α or an uncontrollable high-level event.

The high-level string shi is said to be single event controllable, if

κLsen,shi (Lsen,shi,α) is locally nonblocking.

H is said to be single event controllable if the above property holds ∀shi ∈ Lhi
i , i =

1,2, . . . ,n.

Remark: Note that it can be shown that an EHCDS that is locally nonblocking automatically

is single event controllable, further suggestions on that issue are given in Chapter 6.

In the case that no high-level event is possible after a marked high-level string, marked

state controllability guarantees that the low-level can be driven to a marked state. This

property is identified in [12].
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Definition 4.3.6 (Marked State Controllability)

Let (Glo
re f ,i, phi,Ghi

i ) be a hierarchical abstraction and let γhi ∈ Γhi
i be the control patterns

of Shi
i with L(Shi

i /Ghi
i ) = pi(L(Shi/Ghi).

Choose shi ∈ Lhi
i,m such that γhi ∩Σhi

i (shi) = /0. The string shi is marked state controllable if

∀s ∈ Len,shi : κLs,shi(Ls,shi,γhi) 6= /0

(Glo
re f ,i, phi,Ghi) is marked state controllable if shi is marked state controllable for all

shi ∈ Lhi
i,m with γhi ∩Σhi

i (shi) = /0.

The above properties are met in the application example of this work.

Further required system properties are the marked state acceptance of the hierar-

chical abstractions and the mutual controllability of the abstracted subplants.

Theorem 4.3.1 (Main Result)

Let H be an extended hierarchical and decentralized control system with the following

properties:

• All refinement languages are admissible.

• All hierarchical abstractions are marked state accepting and

marked state controllable.

• All local high-level languages Lhi
i are mutually controllable.

• The low-level supervisors are given by the decentralized modified supervisor imple-

mentation of Definition 4.3.2 implemented according to Definition 4.3.3.

• H is single event controllable.

• All high-level supervisors impose single event control according to Definition 4.3.4.

Then H is hierarchically consistent and the resulting low-level control is nonblocking.

See the appendix for the proof of the above theorem.

With this result, the approach of [13] is extended to a multi-level hierarchy with refinements

for the identification of low-level strings and a modified decentralized supervisor implemen-

tation that, in combination with system properties different from local nonblocking, results

in nonblocking behavior of the controlled system.
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We will see in the following chapter that this approach is applicable for practical examples

of considerable computational size. Refinement languages provide a powerful tool to im-

plement an unlimited number of abstraction levels consisting of subsystems of manageable

size.
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Chapter 5

Case Study: An Automated

Manufacturing System

In this chapter, the application of the extended hierarchical and decentralized approach to a

realistic model of an automated manufacturing plant will be presented. At first, an overview

of the plant will be provided, followed by the main section which contains the description of

the modeling process based on the approach of Chapter 4. Then the application example is

used to evaluate the computational complexity of this approach. The chapter is concluded

with suggestions for a modular implementation on a programmable logic controller (PLC)

with online generation of the low-level control action.

5.1 Application Example: A Fischertechnik Production

Plant Model

The application example is provided by the discrete event systems group of the Lehrstuhl

für Regelungstechnik of the Universität Erlangen-Nürnberg (webpage: [1]) and represents

a typical structure of an automated manufacturing system. It is implemented as a Fis-

chertechnik model and controlled by a industrial standard PLC, a SIEMENS SIMATIC S7-

300. The following picture contains an overwiew of the production plant.
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Figure 5.1: Fischertechnik automated manufacturing system with schematic overwiev

The production process starts at the stack feeder (sf) that inputs workpieces to the con-

veyor belt cb1, where they are distributed to either a reject depot (dep) or to conveyor belts
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cb2 an cb3 via pushers pu1 and pu2.

The conveyor belts cb12 and cb13 on the rotary tables rt2 and rt3 can determine the di-

rection of the workpieces arriving from cb2 and cb3 such that they can be transported

to machine head mh1 equipped with a drill d1 positioned above conveyor belt cb4 or to

machine head mh2 equipped with drill d2 above conveyor belt cb6, respectively, or they

are transported to further conveyor belts cb8 and cb9. The rotary tables rt2 and rt3 are

connected via conveyor belt cb5.

The exit of both manufacturing cells is either the way back to rt2 and rt3, or the workpieces

are transported to conveyer belts cb7 and cb10 via conveyor belts cb11 and cb14 installed

on rotary tables rt1 and rt4.

If a workpiece arrives at one of the conveyor belts cb7-cb10, it can be loaded on one of

two rail transport systems rts1 and rts2 equipped with conveyor belts cb15 and cb16. The

range of rts1 is delimited to the left by roll conveyor rc1, which is an exit buffer for up to 4

workpieces, and by conveyor belt cb9 to the right. Consequently, rts2 can serve conveyor

belts cb8, cb9, cb10 as well as the second exit for workpieces, roll conveyor rc2. Note

that the ranges of both rail transport systems overlap at coveyor belts cb8 and cb9. The

positions, at which rts1 and rts2 can exchange workpieces with the rest of the system are

denoted by gate 1-6.

Sensor signals, for example the arrival/departure of workpieces at each conveyor belt or

the position of the rail transport systems at the respective gate are reported to the PLC,

that can set actuator signals like the movement of each belt according to a control pro-

gram. As any of these sensor and actuator signals is binary, the plant can be modeled

as a discrete event system using finite state automata. The application of the theoretical

approach presented in Chapter 4 to the plant is described in the following section.

5.2 Modeling and supervisor implementation

The theoretical approach presented in Chapter 4 has been implemented to the whole plant.

Therefore, a hierarchy was developed containing the detailed lowest-level models of the

plant up to 5 functional modules in the highest level of abstraction, as shown in Figure

5.1. In this report, we will focus on module 5, as it is examplary for the rest of the plant. It

consists of the rail transport systems rts1 and rts2 combined with the conveyor belts cb15

and cb16 and the roll conveyors rc1 and rc2.
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Figure 5.2: Module 5

The result of the application of the theoretical approach is the hierachical and decentralized

structure shown in the subsequent figure.

Figure 5.3: Hierarchy of module 5

Because of the symmetric structure of module 5, a description of the modeling process
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will be given for submodule rts1cb15, the results will then be transferred to submodule

rts2cb16. We begin with the low-level model of conveyor belt 15.

5.2.1 Conveyor Belt cb15

The conveyor belt can be seen as an elementary component of the plant as it consists of

one actuator (the belt drive) and one sensor for a workpieces presence, and its structure

is the same for all conveyor belts except for cb1. The low-level model has already been

developed in former works, e.g. [4, 14, 13] and is shown in Figure 5.4. For detailed ex-

planations on how to derive a finite automaton from a discrete event system, see [4]. The

resulting model of subplant cb15(0) is shown in the subsequent figure.

Figure 5.4: Low-level model of conveyor belt cb15: cb15(0)

In the initial state the conveyor belt does not move and there is no workpiece at the sensor.

The initial state is marked, which means that a task of the conveyor belt is not completed

before the it is back in the initial state and thus ready for the next task. This property will

be applied to all subsequent plant models as well.

Now that the low-level model of cb15 has been derived, we proceed to the computation of

the low-level supervisor S(0)
cb15, the first step of which is to formulate local specfications that

are as follows:

• To avoid sudden changes of the direction of movement, the belt has to stop, before
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the direction is changed.

Figure 5.5: Specification cb15(0)
spec1

• If the belt moves, it has to move until either a workpiece arrives or a present work-

piece leaves to rc1, cb8 or cb9.

Figure 5.6: Specification cb15(0)
spec2

• When a workpiece arrives (or leaves to rc1,cb8 or cb9), the belt has to stop. Event

cb15stp is forcible, as it can force the belt to stop, before the workpiece leaves (or

the next workpiece arrives).

Figure 5.7: Specification cb15(0)
spec3

• Until a workpiece arrives, movement only in the negative y-direction is allowed, then

movement only in the y-direction is allowed until the workpiece leaves to rc1, cb8 or

cb9.
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Figure 5.8: Specification cb15(0)
spec4

These specifications are composed to form the overall specification cb15(0)
spec =

||4i=1cb15(0)
spec(i), for which the supervisor S(0)

cb15 is computed that leads to the following con-

trolled behavior.

L(cb15(0),c) = κL(cb15(0))

(

L(cb15(0)
spec)||L(cb15(0))

)

= L(S(0)
cb15/cb15(0))

Figure 5.9: Controlled low-level behavior of cb15: cb15(0),c

Because of their general nature, the specifications cb15(0)
spec1 - cb15(0)

spec3 can be transferred

to all remaining conveyor belts.

Now, the locally controlled behavior of cb15 is refined by high-level events, which are

events shared with the adjacent modules (rc1, cb7, cb8 and cb9) representing the be-

ginning and the termination of a detailed low-level task. The introduction of starting and

terminating events is useful for the identification of unique low-level strings. Note that this

is similar to the notion of request and answer events in [7].

So if cb15 is in the initial state and starts moving, this means that the transport of a work-



5.2. MODELING AND SUPERVISOR IMPLEMENTATION 44

piece from cb7, cb8 or cb9 to cb15 is started. This beginning of the task shall be repre-

sented in the high-level by the refinement events cb7− 15, cb8− 15 and cb9− 15. As

the first event of the low-level task is controllable, also the respective refinement events

cb7/8/9−15 are controllable. If the workpiece arrives at cb15 and the belt has stopped,

this task is finished, so the refinement events wp7−15, wp8−15 and wp9−15 are in-

troduced to designate the end of the task. These events are uncontrollable, because once

a low-level task is started, the high-level has to wait for the completion of this low-level

task and therefore is not allowed to disable a termination event. The resulting refinement

automaton R(0)
cb15,1 corresponding to this task is shown in Figure 5.10

Figure 5.10: Refinement automaton R(0)
cb15,1

In the automaton in Figure 5.10, the task "transport of workpiece from cb7, cb8 or cb9 to

cb15" is identified.

Consequently, the remaining task to be refined is "transport of workpiece from cb15 to rc1,

cb8 or cb9" 1, which is identified by the following refinement automaton R(0)
cb15,2.

Figure 5.11: Refinement automaton R(0)
cb15,2

1As cb7 will be used only in -y direction, it can not receive a workpiece from cb15.
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Again, the refinement events representing the state of the low-level string are controllable,

and the finishing refinement events are uncontrollable.

Both refinement automata are now applied to the controlled low-evel model cb15(0),c by

parallel composition resulting in the refined automaton cb15(0)
re f shown in Figure 5.12.

Figure 5.12: Refined automaton cb15(0)
re f

Note that all strings possible in cb15(0) are contained in the strings of cb15(0)
re f , and there

is no uncontrollable low-level event that occurs after a controllable refinement event. Thus,

R(0)
cb15,1 and R(0)

cb15,2 are admissible according to Definition 4.2.1.

As all low-level tasks are now uniquely identified, in this case the set of high-level events

is given by the set of refinement events Σhi
cb15 = Σre f ,cb15 = {cb7− 15,cb8− 15,cb9−

15,wp7 − 15,wp8 − 15,wp9 − 15,cb15 − rc1,cb15 − 8,cb15 − 9,wp15 − rc1,wp15 −

8,wp15−9}. The refined automaton can now be projected to level 1. The result is shown

in Figure 5.13.

Figure 5.13: Projected level-1 automaton: cb15(1)
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For cb15, it is still not determinend with which one of the adjacent modules rc1, cb7,cb8 or

cb9 it can momentarily interact. Controlling this task concerns cb15 as well as rts1. So in

level 1, cb15 has to be composed with rts1, such that the concurrent behavior of both can

be controlled by a level-1 supervisor.

5.2.2 Rail Transport System rts1

The detailed low-level model of a rail transport system has been presented in [4]. Different

from [4], the initial state is the inactive rts1 standing at gate2 in line with cb7. Analogously

to the development process of cb15, at first several specifications of general kind are ap-

plied by a low-level supervisor to the low-level model of rts1. So rts1 is not allowed to leave

the range between rc1 and cb8. Furthermore, it has to stop whenever one of the gate po-

sitions 1-4 is reached, but between two gate positions it is neither allowed to stop nor to

change the direction of movement.

The locally controlled model of rts1, rts1(0),c is then refinened by high-level events that

identify the low-level tasks "movement from one gate to a neighboring gate". For exam-

ple, if rts1 moves from gate 2 to gate 3, this low-level task is started by the refinement

event "rts1_2-3" and terminated by "rts1_3". This results in the refined automaton rts1(0)
re f

presented in Figure 5.14.
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Figure 5.14: Refined low-level model of rts1: rts1(0)
re f

The projection of this model to level 1 is given by rts1(1) shown in the subsequent figure.

Figure 5.15: Projected level-1 automaton rts1(1)
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The local level-1 submodules cb15(1) and rts1(1) are now composed to the level-1 subplant

rts1cb15(1).

5.2.3 Rail Transport System 1 and Conveyor Belt 15

For the level-1 subplant rts1cb15(1), the procedure of supervisory control followed by re-

finement is the same as it has been in Sections 5.2.1 and 5.2.3. There are two kinds of

specifications for rts1cb15, one is the security aspect, which is the mutual exclusion of belt

movement and movement of rts1, the second aspect is the efficiency, which is to avoid

unnecessary paths.

According to that, the resulting specifications to rts1cb15 can be formulated as follows:

• No movement of the conveyor belt while rts1 moves and vice versa.

• Events cb8-15 and cb15-8 are only possible, if rts1 is at gate 3. Specifications with

the same sense are formulated respectively for the remaining gates 1,2 and 4.

• If a workpiece is loaded on cb15 (e.g. from cb8), this workpiece has to be unloaded

at a different gate (e.g. gate 1, 2 or 4, but not gate 3).

• Movement of rts1 to gate1 is only useful, if a workpiece is present at cb15.

• Every change of direction of the movement of rts1 is only possible after a load or

unload task of cb15.

These specifications are composed to form an overall specification rts1cb15(1)
spec im-

plemented in plant rts1cb15(1) by the supervisor S(1)
rts1cb15 according to Figure 5.3. The

controlled plant on level 1 is then given by rts1cb15(1),c with

L(rts1cb15(1),c)= κL(rts1cb15(1))(L(rts1cb15(1)
spec||rts1cb15(1)))= L(S(1)

rts1cb15/rts1cb15(1))

Now all movements of rts1 are synchronized correctly with the conveyor belt actions, so

the events of rts1 are not reported to level 2. The only information about rts1, that has to

be reported to level 2, is the return of rts1 from gates 3 and 4 to gate 2, which means that

subplant rts2cb16 is now allowed to serve these gates. For that reason, the refinement

event "rts1rdy" (rts1 ready) is introduced. The resulting refined automaton rts1cb15(1)
re f is

shown in Figure 5.16.
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Figure 5.16: Refined automaton rts1cb15(1)
re f
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The set of high-level events is given by "rts1rdy" and all events of cb15, as all events of

cb15 are shared with the adjacent modules.

Note that rts1cb15(1)
re f is not locally nonblocking. To show this, consider the initial state

(state 1) in Figure 5.16. If a high-level supervisor enables cb7-15 and disables cb8-15

and cb9-15, there is a low-level string (rts1_2-3,rts1_3), after which cb7-15 is no longer

possible. A further example is state 8, where we find a branching into two low-level signal

pathes, each one ending with a different controllable high-level event (cb15-9 and cb15-

rc1).

Here, the necessity of the property of single-event controllability in Definition 4.3.5 be-

comes obvious. So, whenever there is a branching to seperated low-level signal pathes,

each ending with a different controllable high-levle event, the first event of each branch

has to be controllable, such that it can eventually be disabled by the modified low-level

implementation of the high-level control action given in Definition 4.3.1.

The high-level projection of rts1cb15(1)
re f denoted by rts1cb15(2) is given in the subsequent

figure.

Figure 5.17: rts1cb15(2)
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For an illustration of the modified supervisor implementation S(2−1)
rts1cb15, as-

sume a level-2 supervisor S(2)
rts1cb15rts2cb16 with the decentralized implementation

prts1cb15(S
(2)
rts1cb15rts2cb16) := S(2)

rts1cb15, that imposes the following control action: "A

workpiece coming from conveyor belt 9 (cb9) shall be transported to roll conveyor 1 (rc1)."

This results in the following controlled behavior L(S(2)
rts1cb15/rts1cb15(2)).

Figure 5.18: Controlled behavior of rts1cb15(2)

According to the modified low-level supervisor implementation of Definition 4.3.1, this be-

havior can be used as a specification for the refined level-1 plant rts1cb15(1)
re f , such that the

nonblocking supervisor for this specification is the correct low-level supervisor implemen-

tation. The following figure shows the resulting controlled behavior of rts1cb15(1)
re f , which

is the control action for rts1cb15(1),c.
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Figure 5.19: Controlled behavior of rts1cb15(1)
re f resulting from the modified low-level su-

pervisor implementaion
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One can see, that the level-2 control action is implemented in nonblocking detailed level-1

control actions.

5.2.4 Module 5

With the development of the hierarchical and decentralized control architecture of sub-

module rts1cb15, the main steps of the implementation of the theoretical approach for

module 5 are completed.

The models of submodule rts2cb16 can be derived directly from rts1cb15 using the sym-

metry of the plant structure. The composed subplant rts1cb15rts2cb16(2) is then con-

trolled by S(2)
rts1cb15rts2cb16, such that a collision of rts1 and rts2 in the overlapping range

between cb8 and cb9 is avoided.

The remaining subplants are roll conveyor 1 and 2, which both just consist of a sensor that

detects the arrival and departure of a workpiece, i.e. its low-level automaton model gener-

ates uncontrollable events only. Consequently, a level-0 supervisor is obsolete. These sen-

sor signals "rc1wpar","rc1wplv" and "rc2wpar","rc2wplv" are translated by the refinement

events "cb15-rc1","wp15-rc1" and respectively "cb16-rc2","wp16-rc2", which are shared

with rts1cb15 and rts2cb16, and additional events "rc1rdy" and "rc2rdy". The purpose of

these events is to report to level 2 that the respective roll conveyor can receive the next

workpiece. The refined models rc1(0)
re f and rc2(0)

re f are shown in the subsequent figure.

(a) rc1(0)
re f (b) rc2(0)

re f

Figure 5.20: Refined level-0 automata of roll conveyors 1 and 2

Note that if cb15-rc1 happened once, it can not happen a second time before rc1 has

reported "rc1rdy". If rc1 has received 4 workpieces, it is full, and "rc1rdy" happens not
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before at least one workpiece is removed from rc1 (which is done by hand). As rc1rdy

follows the uncontrollable event rc1wplv, rc1rdy is also an uncontrollable event.

These refined automata are then projected directly to level 2, as they are composed with

the level-2 subplant rts1cb15rts2cb16(2),c to form module 5.

Analogously to the example of module 5, the approach presented in [13] and modi-

fied in Chapter 4 has been applied to the whole Fischertechnik production plant.

It turns out that all subplants are of manageable size on any level of abstraction. This

indicates that the presented method can be used for synthesizing supervisory controllers

for large-scale systems.

5.3 Suggestions for Implementation on PLC

For implementation of finite automata we use Step7, which is one of several possible lan-

guages to program the SIMATIC S7-300 that controls the Fischertechnik plant model. The

SIMATIC framework allows to define all events on the PLC introduced during the modeling

process as user-defined datastructures. This could be for example a list of booleans with

the name of the respective events. The value of each boolean indicates, whether the event

is enabled or disabled. The current state of each automaton implemented on the PLC can

simply be stored as an integer.

The remaining task is to correctly implement the hierarchical and decentralized structure.

Given a specification for the highest level of abstraction, one possibility of implementation

is to compute the controlled behavior S( j, j−1)
i /G( j−1)

i resulting from the low-level super-

visor implementations S( j, j−1)
i for each subsystem i of each level j − 1 offline and then

translate it to PLC-code. This results in a hierarchical and decentralized control program

with instructions for all possible future behavior beginning at the initial state. One disad-

vantage of this procedure is, that whenever the highest-level specification is changed, the

program has to be recalculated throughout the whole hierarchy.

For that reason we implement each locally controlled and refined behavior G( j−1)
re f ,i of the

subsystems of each level in program code, where at first all high-level events Σ( j) are dis-

abled. The controlled behavior of level j according to a given specification in the highest

level then enables the respective high-level events out of Σ( j) and thus starts the processes

in the subsystems of the level j−1. Single event control is automatically guaranteed, if only

one high-level event out of a choice of enabled high-level events is executed in the lower

level by means of priority. If a low-level subsystem is in a state with a branching to several
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low-level pathes leading to different high-level events, the PLC program first checks, which

one of these high-level events is enabled and then executes only the low-level path corre-

sponding to this high-level event. This is an online implementation of the modified low-level

supervisor implementation.

The implementations of all locally controlled subsystems of each level can be seen as a

hierarchical structure of general subroutines that are called with the respective high-level

events as input variables and the low-level events as output variables for the level below.

If the high-level specification allows maximum performance of the plant, i.e. each state

of each subsystem can be reached potentially at least once during the production pro-

cess, this kind of implementation guarantees a control program of minimal size, as the

automaton of each subsystem is the minimal recognizer of all possible future behavior

of this subsystem. Furthermore, if the specification of the highest level is changed, only

the highest-level supervisor has to be recalculated, the corresponding low-level tasks are

generated automatically by the online low-level implementation.
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5.4 State Comparison

The approch presented in this report shows the same computational benefits as the ap-

proach presented in [13]. This can be seen by the fact that all finite automata in the hierar-

chy are of manageable size. The following figure shows the size of the controlled plants of

the hierarchy of module 5 that are supposed to be implemented on PLC.

Figure 5.21: Number of states of each automaton of module 5 implemented on PLC

If the monolithic approach is applied, one has to compose all low-level subplants G(0)
i to

the overall plant of module 5. This composition has 63 504 states, while the abstracted

module 5 that results of the hierarchical and dezentralized approach results in a high-level

plant with only 294 states. A monolithic supervisor S, that achieves the same controlled

behavior that results from the approach of this report would result in a controlled behavior

S/G, which also counts more than 3×104 states. Thus it is not advisable to implement this

controller on PLC, opposed to the controller that consists of the hierarchical submodules

shown in Figure 5.21.
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Chapter 6

Conclusion

In this thesis, a method for the hierarchical and decentralized control of discrete event

systems was presented, wheras previous results [13] were modified regarding industrial

applicability.

Introducing refinement automata e.g. for the identification of unique low-level tasks, the

approach in [13] was extended to a multi-level hierarchy with decentralized subsystems

at each level, and it was modified such that it can be applied to a class of discrete event

systems that do not necessarily fulfill the local nonblocking condition. In this context, the

property of single event controllability has been identified as a structural requirement to

the system models, together with a condition for the supervisors, which is the so called

single event control. Furthermore, a decentralized low-level supervisor implementation was

developed that – in combination with the aforementioned properties of the system and the

supervisors – results in nonblocking behavior of the controlled system.

Furthermore the method has been applied to an automated manufacturing system with a

large number of decentralized subsystems and a hierarchy of several levels of abstraction

as a result. It could be shown that the computation of the approach is manageable for

systems of praxis relevant size and that the resulting control actions can be implemented

on a standard industrial PLC.

However, there are several points of interest remaining for future research efforts. As al-

ready indicated in [13], the maximal permissiveness of the control design in [13] and in this

report compared to a monolithic approach is to be examined.

An interesting point in this context is the fact, that on the one hand requiring local

nonblocking generally for all subsystems of a plant restricts the class of DES to which

the approach can be applied, while on the other hand single event control can be too
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restrictive for those parts of the system that are locally nonblocking a priori. As locally

nonblocking systems are always single event controllable as well, there is a way for

a controller design to be found that takes into account systems that are composed of

both, single event controllable subsystems as well as those that are additionally locally

nonblocking.

A second point of interest is as follows. Given a specification for the highest level of the

control architecture that designates the desired sequential tasks in the real system, a

maximally permissive high-level supervisor often imposes control actions, that lead to

branchings and circularities in the controlled behavior of the subsystems at the lowest

level. This means that there are several different possibilities of low-level behavior that

do not violate the specification for the system up to the worst case of theoretically infinite

repitions of certain tasks. This degree of freedom can be used to optimize the controlled

behavior with regard to the cost (energy, material, time, money etc.) of each alternative

low-level task. So there is room for future investigations on the combination of this

approach with new or existing optimization tools for discrete event systems.
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Appendix A

Proofs of the Main Result

Remark:

The following proofs are the result of collaborative work together with Dipl.Ing. Klaus

Schmidt. Partial results and methods of reasoning have been adopted from [14] and [13].

A.1 Supporting Lemmas

Lemma A.1.1

Lm(Shi/Ghi)||Llo
re f ,m = Lm(Shi/Ghi)||Llo

re f ,m

Proof A.1.1

To show:

a) if s ∈ Lm(Shi/Ghi)||Llo
re f ,m ⇒ s ∈ Lm(Shi/Ghi)||Llo

re f ,m

This condition is always true.

b) if s ∈ Lm(Shi/Ghi)||Llo
re f ,m ⇒ s ∈ Lm(Shi/Ghi)||Llo

re f ,m

To prove this property, let

s ∈ Llo
re f ,m ∧ s ∈ (phi)−1(Lm(Shi/Ghi)) with shi = phi(s) ∈ Lm(Shi/Ghi).

Then ∃uhi ∈ (Σhi)∗ such that shiuhi ∈ Lm(Shi/Ghi) ⊆ Lhi
m = phi(Llo

re f ,m).

Also ∃u ∈ (Σlo∪̇Σre f )
∗ with phi(u) = uhi such that su ∈ Llo

re f ,m.

As shiuhi = phi(su) ∈ Lm(Shi/Ghi) it holds that su ∈ (phi)−1(Lm(Shi/Ghi)).

Consequently, su ∈ Lm(Shi/Ghi)||Llo
re f ,m and thus s ∈ Lm(Shi/Ghi)||Llo

re f ,m.
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Lemma A.1.2

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m) ⊆ Lm(Shi/Ghi)||Llo

re f ,m

Proof A.1.2

Obviously,

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m) ⊆ Lm(Shi/Ghi)||Llo

re f ,m

From Lemma A.1.1 we know

Lm(Shi/Ghi)||Llo
re f ,m ⊆ Lm(Shi/Ghi)||Llo

re f ,m

So lemma A.1.2 is valid.

Lemma A.1.3 Let t ∈ Lm(Shi/Ghi). Then ∃s ∈ L(Shi−lo/Glo
re f ) s.t. phi(s) = t.

Proof A.1.3

As L(Shi/Ghi) is nontrivial ∃t = σ1σ2 · · ·σm ∈ (Σhi)∗ such that t ∈ Lm(Shi/Ghi) ⊆

Lm(Ghi) = phi(Llo
re f ,m). We want to show that ∃s := s1σ1 · · ·smσmu ∈

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m) s.t. phi(s) = t. Note that σ1 ∈ phi

(

κLε,ε(Lε,ε,σ1)
)

as sin-

gle event controllability according to Definition 4.3.5 is required ∀i with σ1 ∈ Σlo
i .

⇒∃s1 ∈ (Σlo −Σhi)∗ such that s1σ1 ∈ κLε,ε(Lε,ε,σ1)

Consequently, s1σ1 ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m). Now, respectively, as-

sume s1σ1s2σ2 · · ·si−1σi−1 ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m). Then σi ∈

phi(κLs1···σi−1 ,σ1···σi−1
(Ls1···σi−1,σ1···σi−1,σi)) because of single event controllability.

Thus s1σ1 · · ·siσi ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m). As this holds for all i = 1, . . . ,m,

s1σ1 · · ·smσm ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m). Then, because t ∈ Lm(Ghi) and

s1σ1 · · ·smσm ∈ Lt,e, it follows from Lemma 3.2 in [13] that ∃u ∈ (Σlo −

Σhi)∗ such that s1σ1 · · ·smσmu ∈ Llo
re f ,m. For showing that s1σ1 · · ·smσmu ∈

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m), we distinguish two cases. First, assume that Shi(t)∩Σhi(t)= /0.

Then, because of marked state controllability, κLt,s1···σm
(Lt,s1···σm, /0) 6= /0. Thus for

u ∈ κLt,s1···σm
, it holds that s1 · · ·σmu ∈ κLlo

re f
(Lm(Shi/Ghi)||Llo

re f ,m) as s1 · · ·σmu ∈ Llo
re f ,m.

In the second case Shi(t) ∩ Σhi(t) 6= /0. Thus for any σ ∈ Shi(t) ∩ Σhi(t), ∃u′

s.t. s1 · · ·σmu′σ ∈ L(Shi−lo/Glo
re f ) = κLlo

re f
(Lm(Shi/Ghi)||Llo

re f ,m). But then, be-

cause of marked state consistency, ∃u ≤ u′ s.t. s1 · · ·σmu ∈ Llo
re f ,m and thus

s1 · · ·σmu ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m).

⇒ s1σ1 · · ·smσmu ∈ κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m)
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Lemma A.1.4 Let H be a marked state controllable EHDCS and let s ∈ L(Shi−lo/Glo
re f ),

shi := phi(s) ∈ L(Shi/Ghi). If i is such that 6 ∃ui ∈ (Σi −Σhi)∗ s.t. siui ∈ Lm(Shi−lo
i /Glo

re f ,i)

for si := pi(s), then ∃t ∈ (Σhi)∗ s.t. shit ∈ Lm(Shi/Ghi) and pi(t) 6= ε.

Proof A.1.4 Assume that Σhi
i (shi

i ) ∩ Shi
i (shi

i ) = /0. Then ∃ui ∈ (Σi − Σhi)∗ s.t. siui ∈

Lm(Shi−lo
i /Glo

re f ,i) because of marked state controllability. Thus it must hold that Σhi
i (shi

i )∩

Shi
i (shi

i ) 6= /0. Thus ∃ti 6= ε s.t. shi
i ti ∈ Lm(Shi

i /Ghi
i ). Also ∃t ∈ (Σhi)∗ with pi(t) = ti 6= ε and

shit ∈ Lm(Shi/Ghi) as Lm(Shi
i /Ghi

i ) = pi(Lm(Shi/Ghi)).

Lemma A.1.5 Let si ∈ L(Shi−lo
i /Glo

re f ,i), shi
i := phi(si) and shi with pi(shi) = phi(si). Then

∃ui ∈ (Σi −Σhi)∗ s.t. siuiσ ∈ L(Shi−lo/Glo
re f ,i)∩Len,shi

i
for σ ∈ Shi(shi)∩Σi.

Proof A.1.5 Let si, shi
i and shi as in Lemma A.1.5 and write si = senu s.t. sen ∈ Len,shi

i
and

u∈ (Σi−Σhi)∗. As σ ∈ Shi(shi)∩Σi, it holds that σ ∈ Shi
i (shi

i ). Because of local nonblocking

of κL
sen,shi

i
(Lsen,shi

i ,γ) (see single event controllability and single event control), ∃ui ∈ (Σ−

Σhi)∗ s.t. siuiσ ∈ L(Shi−lo/Glo
re f ,i)∩Len,shi

i
.

Lemma A.1.6 Let si ∈ L(Shi−lo
i /Glo

re f ,i), shi
i := phi(si) and shi with pi(shi) = phi(si). If t ∈

(Σhi)∗ s.t. shit ∈ L(Shi/Ghi), then ∃ui ∈ Σ∗
i s.t. siui ∈ L(Shi−lo

i /Glo
re f ,i)∩Len,shi

i pi(t)
.

Proof A.1.6 Write pi(t) = σ0σ1σ2 · · ·σm with σi ∈ Σhi
i for i = 1, . . . ,m and σ0 = ε. We

show that ∃u0σ0u1σ1 · · ·umσm ∈ L(Shi−lo
i /Glo

re f ,i) with u j ∈ (Σi − Σhi)∗ for j = 0, . . . ,m

by induction. For j = 0 we have u0 = ε and siu0σ0 ∈ L(Shi−lo
i /Glo

re f ,i). Now assume that

siu0σ0u1 · · ·u j−1σ j−1 ∈ L(Shi−lo
i /Glo

re f ,i). Then, because of Lemma A.1.5, ∃u j ∈ (Σi −

Σhi)∗ s.t. siu0σ0u1 · · ·u j−1σ j−1u jσ j ∈ L(Shi−lo
i /Glo

re f ,i). As this is valid for all j = 1, . . . ,m,

it holds that ∃u := u0σ0u1σ1 · · ·umσm s.t. siu ∈ L(Shi−lo
i /Glo

re f ,i). Also siu ∈ Len,shi
i pi(t)

and

thus siu ∈ L(Shi−lo
i /Glo

re f ,i)∩Len,shi
i pi(t)

.

Lemma A.1.7 Let (G, phi,Ghi,Shi,Slo) be a EHDCS with marked state accepting hier-

archical abstractions (Glo
re f ,i, phi,Ghi

i ) and let Shi−lo
i be decentralized modified supervi-

sors for i = 1, . . . ,n. Also let sen ∈ Len,shi
j
∩L(Shi−lo

j /Glo
re f , j) for shi

j ∈ Lm(Shi
j /Ghi

j ). Then

∃u j ∈ (Σ j −Σhi)∗ s.t. senu j ∈ Lm(Shi−lo
j /Glo

re f , j).

Proof A.1.7 Assume 6 ∃u j ∈ (Σ j −Σhi)∗ s.t. s ju j ∈ Lm(Shi−lo
j /Glo

re f , j). L(Shi−lo
j /Glo

re f , j) =

Lm(Shi−lo
j /Glo

re f , j) because of Lm(Shi−lo
j /Glo

re f , j) = κLlo
re f , j

(Lm(Shi/Ghi||Lm(Glo
re f ,i)). Thus

∃u ∈ Σ∗
j s.t. siu ∈ Lm(Shi−lo

j /Glo
re f , j). But then u = u′σu′′ with u′ ∈ (Σ j −Σhi)∗, σ ∈ Σhi

and u′′ ∈ Σ∗
i . Hence u′ ∈ Lex,shi

j
and because of marked state acceptance, ∃u j ≤ u′ s.t.

s ju j ∈ Lm(Shi−lo
j /Glo

re f , j) which contradicts the assumption.
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A.2 Hierarchical Consistency

To show:

phi(L(Shi−lo/Glo
re f )

)

= phi(κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m)

)

= L(Shi/Ghi)

This splits into:

(1) phi
(

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m)

)

⊇ L(Shi/Ghi)

(2) phi
(

κLlo
re f

(Lm(Shi/Ghi)||Llo
re f ,m)

)

⊆ L(Shi/Ghi)

(1) Proof:

Let shi ∈ L(Shi/Ghi). Then ∃t ∈ (Σhi)∗ s.t. shit ∈ Lm(Shi/Ghi). But because of Lemma

A.1.3, ∃s ∈ Lm(Shi−lo/Glo
re f ) s.t. phi(s) = shit. Consequently, ∃s′ ≤ s with phi(s′) = shi and

it holds that s′ ∈ L(Shi−lo/Glo
re f ).

(2) Proof:

to show: if shi ∈ L(Shi−lo/Glo
re f ) ⇒ phi(s) ∈ L(Shi/Ghi)

→ proof by induction: if s ∈ L(Shi−lo/Glo
re f ) ⇒ phi(sσ) ∈ L(Shi/Ghi)

1. It holds that ε ∈ L(Shi−lo/Glo
re f ) as Shi−lo is admissible. phi(ε) = ε ∈ L(Shi/Ghi)

2. Now let s ∈ L(Shi−lo/Glo
re f ) with phi(s) = shi ∈ L(Shi/Ghi) and σ ∈ (Σlo∪̇Σre f )

such that sσ ∈ L(Shi−lo/Glo
re f )

a) if σ ∈ (Σlo−Σhi), then phi(sσ) = phi(s)phi(σ) = phi(s)ε = shiε = shi ∈ L(Shi/Ghi).

b) now let σ ∈ Σhi: because of Lemma A.1.2 L(Shi−lo/Glo
re f ) ⊆ Lm(Shi/Ghi)||Llo

re f ,m and

thus

sσ ∈ (phi)−1(Lm(Shi/Ghi))

As Shi/Ghi is nonblocking Lm(Shi/Ghi) = L(Shi/Ghi), so

sσ ∈ (phi)−1(L(Shi/Ghi)) ⇒ phi(sσ) ∈ L(Shi/Ghi)

A.3 Nonblocking

Proof A.3.1

For proving nonblocking behavior, we first note that it holds that L(Shi−lo/Glo
re f ) 6= /0, see

Lemma A.1.3.

Now assume that s ∈ L(Shi−lo/Glo
re f ) and shi = phi(s) ∈ L(Shi/Ghi). It has to be shown
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that s ∈ Lm(Shi−lo/Glo
re f ). Because of the definition of the low-level supervisor Shi−lo and

the decentralized implementation according to Definitions 4.3.2 and 4.3.3, si := pi(s) ∈

L(Shi−lo
i /Glo

re f ,i) and shi
i := pi(shi) ∈ L(Shi

i /Ghi
i ) := pi(L(Shi/Ghi)). Considering all local

subsystems Glo
re f ,i, i = 1,2, . . . ,n, we have to distinguish two cases.

Let I0 := {i|@ui ∈ (Σi −Σhi)∗ such that siui ∈ Lm(Shi−lo
i /Glo

re f ,i)}. The following algorithm

provides a high-level string which leads to a marked high-level state and drives each con-

trolled high-level subsystem Shi
i /Ghi

i with i ∈ I0 to a marked state.

1. k = 1, I = I0.

2. choose ik ∈ I .

3. find a string tk ∈ (Σhi)∗ such that shit1 · · · tk ∈ Lm(Shi/Ghi) and pik(tk) 6= ε.

4. remove all j with p j(tik) 6= ε from I .

5. if I = /0: set k∗ = k and terminate

else k := k +1 and go to 2.

Because of Lemma A.1.4, the string tk in item 3. of the algorithm always exists. Also note

that the algorithm terminates as I is a finite index set which is reduced in every loop of the

algorithm.

Now define t := t1 · · · tk∗ . shit ∈ Lm(Shi/Ghi) and ∀i,shi
i pi(t) ∈ Lm(Shi

i /Ghi
i ) and introduce

J := { j|p j(t) 6= ε}. Because of Lemma A.1.6, ∀i ∈ J , ∃ui ∈ Σ∗
i s.t. siui ∈ L(Slo

i /Gc
i )∩

Len,shi
i pi(t)

. Then, because of Lemma A.1.7, ∃ūi ∈ (Σ − Σhi)∗ s.t. siuiūi ∈ Lm(Slo
i /Gc

i ).

For i 6∈ J , we define ui := ε and we note that ∃ūi ∈ (Σ−Σhi)∗ s.t. siuiūi ∈ Lm(Slo
i /Gc

i )

as i 6∈ I0. Then ∀u ∈ ||ni=1siuiūi, it holds that su ∈ ||ni=1Lm(Shi−lo
i /Glo

re f ,i) and phi(su) =

shit ∈ Lm(Shi/Ghi) and thus su ∈ Lm(Shi/Ghi)||
(

||ni=1Lm(Slo
i /Gc

i )
)

= Lm(Slo/Gc). Hence

s ∈ Lm(Slo/Gc).


