

Christine Agethen

A Hierarchical Control Architecture for -Languages

FAU Forschungen, Reihe B

Medizin, Naturwissenschaft, Technik
Band 16

Herausgeber der Reihe:
Wissenschaftlicher Beirat der FAU University Press

Christine Agethen

A Hierarchical Control Architecture
for -Languages

Erlangen
FAU University Press
2017

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de abrufbar.

Das Werk, einschließlich seiner Teile, ist urheberrechtlich geschützt.
Die Rechte an allen Inhalten liegen bei ihren jeweiligen Autoren.
Sie sind nutzbar unter der Creative Commons Lizenz BY-NC-ND.

Der vollständige Inhalt des Buchs ist als PDF über den OPUS Server
der Friedrich-Alexander-Universität Erlangen-Nürnberg abrufbar:
https://opus4.kobv.de/opus4-fau/home

Verlag und Auslieferung:

FAU University Press, Universitätsstraße 4, 91054 Erlangen

Druck: docupoint GmbH

ISBN: 978-3-96147-028-0 (Druckausgabe)
eISBN: 978-3-96147-029-7 (Online-Ausgabe)
ISSN: 2198-8102

A Hierarchical Control Architecture for ω-Languages

Eine hierarchische Reglerarchitektur für ω-Sprachen

Der Technischen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

zur

Erlangung des Doktorgrades

DOKTOR-INGENIEUR

vorgelegt von

Christine Agethen

geb. Baier

aus Erlangen

Als Dissertation genehmigt

von der Technischen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 21.07.2016

Vorsitzender des Promotionsorgans: Prof. Dr. rer. nat. Peter Greil

Gutachter: Prof. Dr.-Ing. Thomas Moor

Prof. Dr.-Ing. Jörg Raisch

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mit-

arbeiterin am Lehrstuhl für Regelungstechnik der Friedrich-Alexander-Universität

Erlangen-Nürnberg. Den zahlreichen Personen, die während dieser Zeit zum Gelingen

meiner Arbeit beigetragen haben, möchte ich an dieser Stelle meinen Dank widmen.

An erster Stelle möchte ich mich besonders bei meinem Doktorvater Herrn Prof. Dr.-

Ing. Thomas Moor für die ausgezeichnete Betreuung bedanken. Die tiefgehenden,

stets konstruktiven Diskussionen und wertvollen Anregungen haben maßgeblich zum

Gelingen der Arbeit beigetragen.

Besonderer Dank gilt auch Herrn Prof. Dr.-Ing. habil. Günter Roppenecker, dem In-

haber des Lehrstuhls für Regelungstechnik, für den stets angenehmen wissenschaft-

lichen Austausch, und für die Übernahme des Vorsitzes der Prüfungskommission.

Ebenfalls herzlich bedanken möchte ich mich bei Herrn Prof. Dr.-Ing. Jörg Raisch

für die Übernahme des Zweitgutachtens, sowie bei Herrn Prof. Dr.-Ing. Jörg Franke

für das Mitwirken in der Prüfungskommission.

Allen Mitarbeitern des Lehrstuhls für Regelungstechnik möchte ich für die vielfältige

Hilfsbereitschaft, die Unterstützung und das Interesse für meine Arbeit danken. Be-

sonderer Dank gilt insbesondere den Kollegen der Forschungsgruppe Ereignisdiskrete

Systeme, für die Bereitschaft zu spontanen Diskussionen, für konstruktive Ideen und

Hinweise, den wissenschaftlichen Austausch und die vielen erheiternden Momente

zwischendurch. Unsere gemeinsame Zeit wird mir in besonderer Erinnerung bleiben.

Abschließend möchte ich vor allem auch meiner Familie herzlich danken, deren

beständiger Rückhalt und wertvolle Unterstützung maßgeblich zur Fertigstellung der

vorliegenden Dissertation beigetragen haben.

Bamberg, im Juli 2016 Christine Agethen

Abstract

In the Supervisory Control Theory according to (Ramadge and Wonham, 1987a) the

behaviour of a dynamical system is described by sequences of discrete events. Typ-

ical applications are production and transportation systems that are operated by pro-

grammable logic controllers. A challenge in this area is the controller synthesis for

systems consisting of a large number of components involving various processes. The

size of a model that describes their synchronous behaviour grows exponentially in the

number of components. Hence, supervisor design using Supervisory Control Theory in

the context of large-scale systems often requires a significant amount of computational

effort and is not advantageous in comparison to conventional methods. In order to

avoid large monolithic models, several hierarchical and modular procedures have been

presented that structure the monolithic control problem vertically and horizontally into

manageable synthesis sub-tasks. However, all these approaches are limited to mod-

elling behaviours on a finite-time horizon, using ∗-languages, see e.g. (Schmidt et al.,

2008), (Feng and Wonham, 2008) or (Leduc et al., 2005). Whereas synthesis proce-

dures of the monolithic controller design also include the controller design for be-

haviours that evolve on an infinite-time axis, so called ω-languages, offering a more

general field of application.

In this thesis, a hierarchical and modular control approach for ω-languages is devel-

oped that is based on the use of abstractions. Known methods regarding the monolithic

controller design for ω-languages are adopted to the hierarchical context. Dynamical

systems are modelled as input/output systems, according to the Behavioural Systems

Theory introduced in (Willems, 1991), and already applied in the context of hierar-

chical supervisor design in (Perk et al., 2008). In contrast to (Perk et al., 2008), the

procedure presented here is not limited to topologically closed behaviours. Hence, in

addition to modelling safety properties, it provides the possibility to include also live-

ness properties in the models. Particularly in large-scale systems this possibility of

specifying non-terminating processes is essential. For a practical perspective, algo-

rithms to solve the presented hierarchical control problem on the basis of finite-state

automata are elaborated and an example from the area of transportation systems is dis-

cussed. It demonstrates that the presented approach enables efficient controller design

for large-scale systems modelled by ω-languages and reduces the respective computa-

tional effort.

Zusammenfassung

In der Supervisory Control Theory nach (Ramadge and Wonham, 1987a) wird das

dynamische Verhalten des zu regelnde Systems mittels der Abfolge von diskreten

Ereignissen beschrieben. Typische Anwendungsgebiete hierfür sind Transport- und

Produktionssysteme, die mit Hilfe von speicherprogrammierbaren Steuerungen be-

trieben werden. Eine große Herausforderung in diesem Bereich ist der Regleren-

twurf für Systeme, die aus vielen Komponenten bestehen und verschiedene Prozesse

aufweisen. Die Größe des Modells zur Beschreibung des synchronen Verhaltens steigt

exponentiell mit der Zahl der Komponenten an. Der Entwurf mittels der Supervisory

Control Theory erfordert daher einen hohen Rechenaufwand, sodass dieses Vorge-

hen im Vergleich zu herkömmlichen Methoden in diesem Fall nicht von Vorteil

ist. Um große monolithische Modelle zu vermeiden, wurden diverse modulare und

hierarchische Vorgehensweisen vorgestellt, die den Gesamtentwurf in handhabbare

Teilentwürfe horizontal und vertikal zerlegen. Diese Ansätze beschränken sich je-

doch auf eine Modellbildung des gegebenen Prozesses mittels endlicher Verhalten,

siehe z.B. (Schmidt et al., 2008), (Feng and Wonham, 2008) oder (Leduc et al., 2005).

Die klassische Supervisory Control Theory umfasst hingegen auch den Reglerentwurf

für unendlich fortlaufende Verhalten, die sog. ω-Sprachen, und bietet somit ein allge-

meineres Anwendungsgebiet.

In der vorliegenden Arbeit werden bestehende Methoden des Reglerentwurfs für un-

endliche Verhalten aufgegriffen und hinsichtlich eines sowohl modularen, als auch hi-

erarchischen abstraktionsbasierten Reglerentwurfsvorgehens erweitert. Dabei wird auf

die besondere Modellierungsart mittels Ein-/Ausgangssysteme der Behavioural Sys-

tem Theory nach (Willems, 1991) zurückgegriffen, die auch bereits in (Perk et al.,

2008) eingesetzt wurde. Als weitere Besonderheit ist das Verfahren im Gegensatz

zum Vorgehen in (Perk et al., 2008) nicht auf topologisch abgeschlossene Verhalten

beschränkt. Es eröffnet damit die Möglichkeit neben Sicherheitseigenschaften auch

Lebendigkeitseigenschaften zu modellieren. Besonders im Kontext großer Systeme

ist die Möglichkeit unendlich fortlaufende Prozesse zu spezifizieren essentiell. Für

die praktische Anwendung des Verfahrens werden Lösungsalgorithmen auf Basis von

endlichen Zustandsautomaten entwickelt und ein Anwendungsbeispiel aus dem Bere-

ich der Transportsysteme herangezogen. Es wird dabei gezeigt, dass es mit der vorge-

stellten Methode möglich ist, einen effizienten Reglerentwurf für große Systeme,

die mittels ω-Sprachen modelliert wurden, durchzuführen und den Rechenaufwand

dadurch zu verringern.

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Hierarchical and modular control architecture 4

1.1.2 Modelling with ω-languages 5

1.2 Contribution . 6

1.3 Outline . 7

2 Preliminaries 9

2.1 Formal Languages . 9

2.1.1 Basic notation for ∗-languages 10

2.1.2 Basic notation for ω-languages 12

2.2 Representation of formal languages 15

2.2.1 Representation of ∗-languages 15

2.2.2 Representation of ω-languages 16

2.2.3 Constructions on finite-state automata 18

2.3 Supervisory control of finite string languages 21

2.3.1 Control problem with partial event observation 24

2.3.2 Control problem with partial observation and completeness . . 25

3 Monolithic controller design for ω-languages 29

3.1 Supervisory control of infinite string languages 31

3.1.1 Control problem under complete event observation 32

3.1.2 Control problem under partial event observation 36

3.1.3 Algorithmic solutions for infinite-string control problems . . . 40

3.2 Control problem based on input/output systems 57

3.2.1 Properties of the IO-control-problem 58

3.2.2 Properties of the IO-plant . 60

3.2.3 Properties of the IO-specification 64

3.2.4 Solution to the control problem 66

3.2.5 Properties of the closed-loop behaviour 67

3.3 Conclusion - Monolithic controller design for ω-languages 70

i

Contents

4 Hierarchical and modular controller design for ω-languages 71

4.1 Hierarchical and modular controller design for ∗-languages 73

4.1.1 Modular controller design 73

4.1.2 Hierarchical abstraction-based controller design 74

4.1.3 Hierarchical abstraction-based and modular controller design . 76

4.2 Abstraction-based control problem for input/output systems 77

4.2.1 Properties of the non-anticipating IO-plant 79

4.2.2 Propagation of plant properties 82

4.2.3 Abstraction-based controller design 83

4.3 Hierarchical and modular control problem for input/output systems . . 85

4.3.1 Properties of the IO-system composition 86

4.3.2 Propagation of plant properties 92

4.4 Example - Application on transport systems 93

4.4.1 Low-level controller design 94

4.4.2 Hierarchical and modular controller design 98

4.5 Conclusion - Hierarchical and modular controller design 103

5 Summary 105

Appendix 109

A Technical details . 109

B Table of symbols . 110

ii

1 Introduction

The behaviour of dynamical systems can be modelled in many different ways, de-

pending on the objective behind the respective application. A common way is the

use of a time-continuous system description based on differential equations. This ap-

proach is often used in order to analyse, as well as to manipulate the time response

of a given system. Another way of modelling dynamical systems is the use of dis-

crete event dynamic systems, also known as discrete event systems. According to

(Cassandras and Lafortune, 2008), a discrete event dynamic system can be character-

ized by two key properties, a discrete set of states and an event-driven state transi-

tion mechanism based on a discrete set of events. In particular, such systems evolve

over time only according to abrupt and irregular occurrences of asynchronous discrete

events; see also (Ramadge and Wonham, 1989).

Typical examples for discrete event dynamic systems are automated transportation and

manufacturing systems. In Figure 1.1 a respective laboratory model of a flexible man-

ufacturing system is demonstrated. It consists of various actuators, such as conveyor

Figure 1.1: Laboratory model of a manufacturing system

1

Section 1.1. Motivation

belts, rotary tables and pushers, to transport work pieces through the system, and var-

ious sensors for work piece detection. In addition, the manufacturing system provides

two processing machines to process the work pieces. Details regarding discrete event

models of this system are given in (Moor et al., 2010). Discrete event systems are also

suitable e.g. for modelling network communication (Schmidt et al., 2007), network

protocols (Cieslak et al., 1986), database management systems (Lafortune, 1988), as

well as genetic regulatory networks (Baldissera and Cury, 2012).

1.1 Motivation

A common property of all applications is the need for a coordinator in order to ensure

a specified succession of discrete events in the given system. An example for such a

coordinator, e.g. for a transportation system as in Figure 1.1, is a programmable logic

controller (PLC), as shown in Figure 1.2. In the late 80s, the Supervisory Control

Theory was introduced in (Ramadge and Wonham, 1987a). It proposes a systematic

and model-based approach for the controller design for discrete event systems. The

basic idea is represented in Figure 1.2.

plant

event
sequences

actuator

PLC

specification

plant model

specification model

controller model
code

conversion

modelling
process

event actuator
eventssequencesevents

Figure 1.2: Basic concept of Supervisory Control Theory

2

Chapter 1. Introduction

According to Supervisory Control Theory, the uncontrolled behaviour of a given

system (the plant), as well as the specified behaviour (the specification) are rep-

resented by particular models. The most common models, already applied in

(Ramadge and Wonham, 1989), are automata on finite words, representing finite

string languages also known as ∗-languages. A detailed introduction is given in

(Hopcroft and Ullman, 1979). Another way to model a system behaviour, which is

of particular interest for this thesis, is the use of infinite-string languages, represented

by ω-automata, see also (Thomas, 1990) and (Mukund, 1996). The following example

shortly demonstrates the modelling process for discrete event systems by automata.

Example 1.1.1

A typical application for modelling with discrete event systems is the conveyor belt in

Figure 1.3, which forms part of the laboratory model in Figure 1.1.

Figure 1.3: Conveyor-belt

In Figure 1.4 it is shown a finite-state automaton that describes the behaviour of the

respective conveyor belt. It represents states of the conveyor belt and transitions from

one state to the next, generating event sequences. State 1 is the initial state of the system

behaviour. Active transitions for this state are either switching the conveyor belt on by

bm+ or off by boff. Turning the conveyor belt on causes a transition to state 2. The

conveyor belt contains a sensor in the middle of the belt that detects the arrival of work

pieces (wpar) as well as the leaving of work pieces (wplv). The model describes that

detection of work pieces is possible when the conveyor belt is on.

3

Section 1.1. Motivation

Figure 1.4: Behaviour of a conveyor belt modeled by a finite-state automaton

Depending on the behaviour that shall be described, the automaton can be interpreted

as a finite-state automaton. Then, the marked states 1 and 4 accept finite event se-

quences that end in those states. Further, it can be interpreted as an ω-automaton, that

accepts only sequences that pass those states infinitely often. �

The task of the controller is to provide particular actuator events as reaction on event

sequences in the plant behaviour and to guarantee thereby the enforcement of a given

specification in the closed-loop system. Various algorithms are provided to be applied

on respective finite-state automata, which model the behaviour of the plant and the

specification, in order to systematically synthesize controller models. The synthesized

models can then be implemented on the given PLC that interacts with the real system,

e.g. by using code conversion.

1.1.1 Hierarchical and modular control architecture

The main advantage of Supervisory Control Theory itself is the guarantee that a

synthesized controller enforces the given specification. Hence, time-consuming test

phases are avoided. They would be necessary if an appropriate control is determined

in a conventional way, in particular, when using trial-and-error methods. Neverthe-

less, one of the main challenges of Supervisory Control Theory is the treatment of

large-scale systems. Since the number of system states grows exponentially in the

number of system components, the respective computational effort for solving the

control problem also increases exponentially; see (Gohari and Wonham, 2000) and

(Rohloff and Lafortune, 2002) for detailed analysis. Consequently, several approaches

4

Chapter 1. Introduction

were presented that exploit structural system properties in order to avoid large and

complex monolithic plant models. Thereby, common engineering practise is used and

the global control task is divided into sub-tasks. Modular, decentralized and hierar-

chical control architectures are designed with the aim to keep the models involved

in synthesis procedures as small as possible. In (Ramadge and Wonham, 1987b) and

(Wonham and Ramadge, 1988) first ideas regarding modular control were presented.

They proposed to divide the control task into several sub-tasks, and design a controller

for each sub-task. This idea was further developed in (de Queiroz and Cury, 2000a)

and (de Queiroz and Cury, 2000b). Another approach is the hierarchical, abstraction-

based controller design introduced by (Wong and Wonham, 1996). The combina-

tion of both ideas has been presented e.g. in (Schmidt et al., 2008; Perk et al., 2008;

Feng and Wonham, 2008; da Cunha et al., 2002; Leduc et al., 2005). Some of them

were proven to be successful in large-scale system applications; see e.g. (Moor et al.,

2010) and (Kaess, 2014).

1.1.2 Modelling with ω-languages

In this thesis, the focus lies on the controller design for automata on infinite words

that represent infinite string languages, also called ω-languages or sequential be-

haviour. In (Ramadge, 1989) it was already pointed out that an important advan-

tage of ω-languages compared to ∗-languages is the possibility to model processes

on an infinite-time horizon and to be able to distinguish between transient and the

non-transient behaviour. Infinite string languages have often been used for modelling

asynchronous processes and fair concurrency, e.g. in the area of concurrent computa-

tion or communication protocols. In particular, the area of Temporal Logic is strongly

connected with the representation by ω-automata. Temporal Logics for concurrent sys-

tems has been introduced in (Pnueli and Rosner, 1989) in order to specify and verify

the correctness of computer programs. Some years later, the development of Model

Checking techniques, see e.g. (Emerson and Clarke, 1980) and (Clarke et al., 1986),

enabled automated synthesis procedures, which are used in the area of Reactive Synthe-

sis. The interest in combining the area of Supervisory Control with this area and Model

Checking is increasing. Both approaches, the Supervisory Control Theory and the Re-

active Synthesis, have been developed mostly independently and have been proven

to be successful in industrial applications. Nevertheless, each has its strengths and

weaknesses; see (Ziller and Schneider, 2005) and (Ehlers et al., 2014) for a detailed

comparison. It seems to be promising to combine them to benefit from both. How-

ever, Temporal Logic is strongly connected to a representation by ω-automata; see

e.g. (Mukund, 1997) for the strong connection between Linear Temporal Logic and

Büchi automata. Thus, it is important to further develop supervisor synthesis meth-

ods for ω-languages. For monolithic controller design involving ω-languages, some

5

Section 1.2. Contribution

approaches are known. In (Ramadge, 1989) the control problem for sequential be-

haviour under complete event observation has been discussed. In (Kumar et al., 1992)

first results regarding partial observation have been presented. Whereas more general

liveness properties in both cases were analysed in (Thistle and Wonham, 1994a) and

(Thistle and Lamouchi, 2009). However, further developments regarding hierarchical

and modular approaches to overcome the problem of computational effort for large-

scale systems are still missing.

1.2 Contribution

The contribution of this thesis is an approach for the design of hierarchical and mod-

ular control architectures for ω-languages. To the author’s best knowledge, up to now,

there does not exist any other hierarchical approach that includes not only topologically

closed ω-languages, but also more general liveness properties. In general, the approach

is based on a notion of input/output systems known from the Behavioural System The-

ory introduced in (Willems, 1991). In (Moor et al., 2003) this behavioural input/output

description was used to develop hierarchical control for a class of hybrid systems. In

Perk et al. (2008) these ideas regarding hierarchical control for discrete-event systems

were further elaborated. However, in (Moor et al., 2003) the focus lies only on topolog-

ically closed behaviour. The approach in (Perk et al., 2008) is focused on prefix-closed

∗-languages and therefore also only on topologically closed ω-languages. In the ap-

proach at hand, this limitation is dropped and a method is proposed that includes more

general liveness properties.

The basic idea behind the approach is to design for each individual level of the hierar-

chy a separate controller according to a language inclusion specification and to use the

specification itself as an abstraction of the underlying closed-loop system for the syn-

thesis of the controller one level above. For systems consisting of several components,

individual low-level controllers are designed that enforce local control objectives, and a

composition of the respective local specifications shall be used as abstraction of the un-

derlying system to design a high-level supervisor. The computational effort is expected

to be reduced by alternating abstraction and controller synthesis, since the specifica-

tion does not need to express how the control objective is achieved. In (Perk et al.,

2008), this has been demonstrated for topologically closed languages by a transport

system example. Hence, the fundamental question is, whether controller synthesis on

the different levels can actually be based on abstractions of the given specifications of

the levels below. In (Perk et al., 2008), it was demonstrated that, as long as all relevant

languages are considered prefix-closed, the validity of the abstraction-based approach

is established by a fairly simple set-inclusion argument. However, it is necessary to im-

pose further constraints to model liveness properties possessed by the plant or required

6

Chapter 1. Introduction

by the specification. In the case of more general liveness properties, this problem re-

sults to be more intricate due to the inclusion of liveness properties. Hence, the notion

of non-anticipating input/output systems is introduced, which was defined originally

in (Moor et al., 2010), to achieve a non-conflicting closed-loop configuration in the

abstraction-based design. As a consequence, it is not necessary to impose further con-

straints. Liveness properties can be included naturally by using not topologically closed

ω-languages.

1.3 Outline

The outline of the thesis is as follows. In Chapter 2, a short introduction into the theory

of formal languages is given. Starting with finite string languages, the basic notation

is extended to infinite string languages and it is illustrated how to represent them by

graphs consisting of a finite number of states and state transitions. At the end of this

chapter, the Supervisory Control Theory for finite string languages is described for

partial event observation. It is extended by the property of completeness in the closed-

loop system in order to lead over to the control problem for ω-languages. In Chapter 3,

a detailed introduction into the control of ω-languages for the case of complete, as

well as partial event observation is given. For practical implementations, algorithms to

solve the presented control problems are proposed. Finally, a specific control problem

based on the input/output description of the Behavioural System Theory is derived.

A solution is developed and relevant closed-loop properties are analysed. This con-

trol problem forms the basis of the proposed hierarchical and modular approach for

ω-languages. In Chapter 4, the ideas of modular and abstraction-based controller de-

sign in the context of finite string languages are revealed, in order to extend them to

infinite string languages. The control problem of the previous Chapter is used to de-

velop an abstraction-based and modular control architecture for ω-languages. Finally,

a transportation system example is used to demonstrate the approach from a practical

perspective and to show the potential computational benefit.

7

2 Preliminaries

In this thesis, the behaviour of a discrete event system, i.e. the sequences of phys-

ical events that may occur in a discrete event system, is described by formal finite

and infinite string languages. The theory of formal languages is a theoretical frame-

work that is often used in mathematics and computer science. For the representation

of formal languages, finite-state automata can be used; see also (Hopcroft and Ullman,

1979) for a detailed introduction into modelling discrete event systems by formal lan-

guages. This particular framework has been introduced into the area of system con-

trol theory in (Ramadge and Wonham, 1989) and is also referred to as Supervisory

Control Theory. Following the ideas of (Ramadge and Wonham, 1989), different ap-

proaches have been developed for the controller design of discrete event systems; see

also (Cassandras and Lafortune, 2008), (Thistle, 1996) or (Kumar and Garg, 1995).

In this Chapter, it is given a short introduction in the theory of formal languages and the

representation by finite-state automata. Further, the controller design according to the

Supervisory Control Theory is described for finite string languages. The Chapter is or-

ganized as follows. In Section 2.1 basic notation for ∗-languages and for ω-languages

is given. Section 2.2 illustrates representation possibilities of formal finite and infinite

string languages by finite-state automata. Finally, Section 2.3 gives a general introduc-

tion into the theory of the control of discrete event systems modelled by finite string

languages.

2.1 Formal Languages

To model the behaviour of a discrete event system, the mathematical framework of

formal languages is used. Therein, it can be differed between processes with finite-

time behaviour and finite termination, modelled by finite string languages, also called

∗-languages, in contrast to infinite-time behaviours, also called sequential behaviours

or ω-languages. In the following, the two different kinds of languages are introduced,

relevant properties are discussed and it is described how use languages to model pro-

cesses that evolve either on a finite or on a infinite time axis.

9

Section 2.1. Formal Languages

2.1.1 Basic notation for ∗-languages

A set of physical events that occur in a discrete event system is given in form of an

alphabet Σ. A finite sequence of events s = σ1σ2...σn, with n ∈ N, is denoted a finite

string. Further, the Kleene-closure Σ∗ is defined as a set of finite strings s= σ1σ2 · · ·σn,

n∈N, with σn ∈Σ, i.e. the set of all finite strings that can be formed by the events given

in the alphabet Σ, including the empty string ε ∈ Σ∗, ε 6∈ Σ. The length of a string s∈ Σ∗

is given by |s| ∈ N. A ∗-language over Σ is given as a set of strings L ⊆ Σ∗. Hence, a

language is a selection of strings which are possible for the given alphabet Σ.

General ∗-language properties

A language L ⊆ Σ∗ is bounded if sup{|s| | s ∈ L} < ∞, or, else, the language L is

denoted as unbounded. If for two strings s,r ∈ Σ∗ there exists t ∈ Σ∗ such that s = rt,

it is said that r is a prefix of s, denoted by r ≤ s. If, in addition, r 6= s, then, r is a strict

prefix of s and it is written r < s. Further, the prefix of the string s with length n ∈ N,

n ≤ |s|, is denoted s(n).

Definition 2.1.1 Prefix-closure

The prefix-closure (or short closure) of L ⊆ Σ∗ is defined by

preL := {r ⊆ Σ∗ | ∃s ∈ L : r ≤ s}. �

A language L ⊆ Σ∗ is called prefix-closed or short closed, if L = preL, i.e. for every

string contained in L, its prefixes are also contained in L.

Definition 2.1.2 Relative closedness

Given L, K ⊆ Σ∗, K is said to be relatively closed w.r.t. L if

K = (preK) ∩ L. �

If a language K is relatively closed w.r.t. a closed language, then K itself is closed.

The closure operator distributes over arbitrary unions of languages. However, for the

intersection of two languages L, K ⊆ Σ∗, it is pre(L∩K) ⊆ (preL)∩ (preK), and, if

equality holds, L and K are said to be non-conflicting. Note that this is trivially the case

for K ⊆ L.

Another useful property, especially in the context of infinite behaviours, is the com-

pleteness 1.

1 Note that this definition should not be confused with the definition of completeness of the Behavioural

System Theory, defined e.g. in (Willems, 1991).

10

Chapter 2. Preliminaries

Definition 2.1.3 Completeness

A language K ⊆ Σ∗ is said to be complete, if for all s ∈ preK there exists σ ∈ Σ such

that sσ ∈ preK. �

This property was discussed in the context of infinite behaviours e.g. in (Kumar et al.,

1992). Note further that completeness is preserved under arbitrary unions of languages.

Properties regarding event observation

The physical events of a discrete event system differ regarding their observability. It is

distinguished between observable events Σo and unobservable events Σuo. Hence, it is

also differed between systems under complete observation, if only observable events

are involved, and systems under partial observation, if also unobservable events occur

in the given system. In order to hide e.g. unobservable events, a useful operator is

introduced.

Definition 2.1.4 Natural projection

The natural projection po : Σ∗ → Σ∗
o, Σo ⊆ Σ, is defined iteratively:

poε := ε ,

po(sσ) :=

{

(pos)σ for s ∈ Σ∗,σ ∈ Σo

pos for s ∈ Σ∗,σ /∈ Σo

�

Vice versa, the set-valued inverse intersperses events from Σuo in strings defined on Σo.

Definition 2.1.5 Inverse projection

The set-valued inverse p−1
o is defined by p−1

o (r) := {s ∈ Σ∗ | po(s) = r} for r ∈ Σ∗
o. �

When applied to languages, the projection distributes over arbitrary unions, and the

inverse projection distributes over arbitrary unions and arbitrary intersections. Further-

more, the closure operator commutes with projection and inverse projection.

Equivalence relations

According to (Hopcroft and Ullman, 1979), an arbitrary relation R that is reflexive,

transitive and symmetric is called an equivalence relation. For an arbitrary set M, and

two elements s, t ∈ M, it is written s ≡R t, for sRt. By [s]R := {t ∈ M | t ≡R s}, the

respective equivalence class containing s ∈ M is denoted. A fundamental characteristic

of the equivalence relation is the division of the state space in disjoint, non-empty

11

Section 2.1. Formal Languages

equivalence classes. Note that, in general, the number of equivalence classes may be

infinite, but in the case of regular languages, the number is finite. A particular kind

of equivalence relation is the Nerode equivalence. It is a right congruence, i.e. s ≡R t

implies sz ≡R tz for z ∈ M.

Definition 2.1.6 Nerode equivalence

The Nerode equivalence w.r.t. a language L ⊆ Σ∗ is an equivalence relation on Σ∗ and

defined by

s′ ≡L s′ if for all t ∈ Σ∗ it is s′t ∈ L ⇔ s′′t ∈ L. �

According to this definition, two strings are equivalent, if they are equally extensible in

L. Therefore, the Nerode equivalence is a useful medium for the characterization of the

state space of finite automata. A well-known application is the characterization of the

minimal state space under language conservation; see (Hopcroft and Ullman, 1979).

2.1.2 Basic notation for ω-languages

In contrast to the finite string setting, an infinite string over Σ is defined as a map

w : N → Σ. The set of all infinite strings over Σ is given by Σω := {w | w : N → Σ}.

Hence, an ω-language is a subset L ⊆ Σω of all infinite strings over Σ. Note that,

throughout this thesis, ω-languages are denoted by calligraphic letters. For a general

discussion of ω-languages, refer to (Mukund, 1996; Thomas, 1990).

General ω-language properties

Given w ∈ Σω , the prefix with length n ∈N is denoted w(n) ∈ Σ∗ and it is written s < w

for a prefix s ∈ Σ∗ of w.

Definition 2.1.7 Prefix

The prefix of a language L⊆ Σω is defined by preL := {s ∈ Σ∗ | ∃w ∈ L : s < w}. �

The prefix of any ω-language is a complete prefix-closed ∗-language and the prefix op-

erator distributes over arbitrary unions of ω-languages. However, for the intersection of

two ω-languages L,K⊆Σω , it is pre(L∩K)⊆ (preL) ∩ (preK), and, if equality holds,

the languages are said to be non-conflicting. The languages L, K⊆ Σω are locally non-

conflicting if (preL) ∩ (preK) is complete. If two languages are non-conflicting, they

are also locally non-conflicting. Note, that for K ⊆ L both conditions are trivially sat-

isfied. Another important language operator is the quotient operator, sometimes also

denote the right quotient.

12

Chapter 2. Preliminaries

Definition 2.1.8 Quotient

For any L ⊆ Σ∗ and any K ⊆ Σ∗∪Σω , the quotient is defined by

K/L := {w ∈ Σ∗∪Σω | ∃s ∈ L : sw ∈ K}. �

It can be seen from the definition, that the quotient extracts all continuations of all

strings contained in a given finite language in another finite or infinite language.

Definition 2.1.9 Active event set

For any language L ⊆ Σ∗∪Σω and any string s ∈ preL, the active event set of L after

s is given by eligL(s) := Σ∩ (preL/s). �

A monotone sequence of strings, denoted by (sn)⊆ Σ∗, is a sequence (sn)n∈N, sn ∈ Σ∗,

sn ≤ sn+1 for all n ∈ N. The sequence (sn) is bounded if sup{|sn| | n ∈ N} < ∞,

or else, (sn) is unbounded. The point-wise limit of a monotone sequence (sn) is

denoted by lim(sn) ∈ Σ∗ ∪ Σω . For a language L ⊆ Σ∗, the limit is defined by

limL := {lim(sn) | (sn) ⊆ L}∩Σω . Note that, in general, pre limL ⊆ L, if L is prefix-

closed. In particular pre limL = L, if and only if L is complete and prefix-closed; see

(Kumar et al., 1992). Hence, pre limpreL = preL. Further, preL = prelimL, if L is

complete. According to (Ramadge, 1989), for a family of ∗-languages La,a ∈ A, it

is ∪a∈A limLa ⊆ lim(∪a∈ALa). Equality is given, in case of a finite union. Further,

it is ∩a∈A limLa ⊇ lim(∩a∈ALa). For the intersection of two ∗-languages L, K ⊆ Σ∗,

with K = preK, it is lim(L∩K) = (limL)∩ (limK); see also (Baier and Moor, 2012),

Lemma 1.

Definition 2.1.10 Topological closure

The topological closure (or short closure) of an ω-language L⊆ Σω is defined by

cloL := limpreL. �

An ω-language is said to be topologically closed (or short closed) if cloL = L. The

limit of a prefix-closed ∗-language is topologically closed. Further L ⊆ cloL; see

(Ramadge, 1989).

Definition 2.1.11 Relative closedness

Given two ω-languages L, K ⊆ Σω , K is said to be relatively closed w.r.t. L, if

K = (cloK)∩L. �

The closure operator distributes over finite unions of ω-languages, see e.g. (Ramadge,

1989).

13

Section 2.1. Formal Languages

Properties regarding event observation

Dealing with partial event observation requires respective operators for ω-languages.

Definition 2.1.12 Natural projection of infinite strings

For the natural projection of infinite strings, let w∈Σω , denote (sn)⊆Σ∗ an unbounded

monotone sequence of prefixes of w, and define

pω
o w := lim(posn) ∈ Σ∗

o ∪Σω
o �

This definition is based on a definition that was elaborated in the context ω-languages

in (Kumar et al., 1992). The definition of the set-valued inverse is straight forward.

Definition 2.1.13 Inverse projection of infinite strings

The set-valued inverse for v ∈ Σ∗
o ∪Σω

o is given by

p−ω
o (v) := { w ∈ Σω | pω

o (w) = v}. �

When applying the projection to languages, it is obtained

pω
oL= {pω

o w |w ∈ L} ⊆ Σ∗
o ∪Σω

o for L⊆ Σω , and

p−ω
o Lo = {w ∈ Σω |pω

o w ∈ Lo} for Lo ⊆ Σ∗
o ∪Σω

o .

Here, the projection distributes over arbitrary unions, the inverse projection over

arbitrary unions and arbitrary intersections. Further, both commute with the prefix op-

erator. Note also that p−ω
o pω

oL= {w∈ Σω |∃w′ ∈L : pω
o w= pω

o w′}. In (Baier and Moor,

2012), Lemma 2, the relationship between limit and projection has been further anal-

ysed.

Lemma 2.1.1 (Baier and Moor, 2012)

Given Σ, Σo ⊆ Σ, and L = preL ⊆ Σ∗, Lo ⊆ Σ∗
o, Lo ⊆ Σω

o , then

(i) (pω
o limL)∩Σω

o = limpoL,

(ii) p−ω
o limLo = (limp−1

o Lo)∩ (p−ω
o Σω

o),

(iii) clop−ω
o Lo = (p−ω

o cloLo) ∪ (p−ω
o preLo). �

14

Chapter 2. Preliminaries

2.2 Representation of formal languages

For the purpose of illustration of practical applications and the computation of solu-

tions to the control problem, this subsection introduces finite representations for the

given finite and infinite string languages. A multitude of representations can be found

in the literature; see also (Hopcroft and Ullman, 1979; Thomas, 1990; Mukund, 1996).

In the context of this thesis, ∗-languages are represented by finite-state automata and

ω-languages by Büchi automata. Some relevant operations on the representations are

illustrated which are applied in the reminder of this thesis. Note that the main results

developed in the subsequent Chapters do not rely on a particular form of representation.

Nevertheless, when referring to practical applications and computational procedures in

this thesis, the attention is focused pragmatically on finite-state and Büchi automata.

The motivation therefore is the use of the open-source C++-library libFAUDES, which

is based on finite-state and Büchi automata, see also (libFAUDES, 2015).

2.2.1 Representation of ∗-languages

A ∗-language is represented by a standard finite-state automaton; see e.g.

(Hopcroft and Ullman, 1979).

Definition 2.2.1 Finite-state automaton

A finite-state automaton is given as a five-tuple

G = (Q,Σ,δ ,Qo,Qm),

where Q is the set of states, Σ is the alphabet of events, δ : Q×Σ → 2Q is a transition

function, Qo the set of initial states and Qm the set of marked states. �

If the transition function is given as δ : Q×Σ → Q and the initial states consist of a

single initial state qo, then it is called deterministic. A finite ∗-language generated by

G is given by

L(G) = {s ∈ Σ∗ | δ (qo,s)!},

where it is written δ (qo,s)!, if δ (qo,s) is defined, i.e. δ (qo,s) 6= /0. Note that the

above definition uses the extended transition function δ : Q × Σ∗ → Q; see e.g.

(Hopcroft and Ullman, 1979). The extension is denoted by the same symbol δ . A finite

∗-language that is marked by G is defined by

Lm(G) = {s ∈ Σ∗ | δ (qo,s) ∈ Qm 6= /0}.

It represents all strings that correspond to paths ending in a marked state. Note that

a ∗-language L ⊆ Σ∗ is regular, if it is marked by a finite-state automaton; see e.g.

(Hopcroft and Ullman, 1979).

15

Section 2.2. Representation of formal languages

Operations on ∗-languages relevant to this thesis retain regularity, with known algo-

rithms to obtain the respective finite state realisation.

Example 2.2.1

To illustrate the representation of ∗-languages, a trivial example is provided in Fig-

ure 2.1.

Figure 2.1: Example for the representation of languages by a finite-state automaton

The automaton consists of the state set Q = {S1,S2,S3}, the event set Σ = {a,b,c,d},

the initial state qo = S1 and the marked state Qm = {S1}. The ∗-language generated

by the given automaton is L(G) = pre((ab(cb)∗d)∗), whereas the marked language is

Lm(G) = (ab(cb)∗d)∗. Note that all valid strings in the marked language end with the

event d, since the transition labelled by this event is the only one that leads to a marked

state. Observe that the given automaton is deterministic. �

2.2.2 Representation of ω-languages

The basic structure of the finite-state automaton is also used for the representation of

ω-languages. The only difference to the finite-state automaton used for the representa-

tion of ∗-languages lies in the language acceptance criterion. A variety of acceptance

criteria are given in the literature. For the scope of this thesis, the focus lies on the

Büchi and the Rabin acceptance conditions. For further details regarding other repre-

sentations of ω-languages, see also (Mukund, 1996) or (Thomas, 1990).

Definition 2.2.2 Büchi automaton

A Büchi automaton is given as a five-tuple

G = (Q,Σ,δ ,Qo,Qm),

where Q is the set of states, Σ is the alphabet of events, δ : Q×Σ → 2Q is a transition

function, Qo the set of initial states and Qm the set of marked states. �

16

Chapter 2. Preliminaries

If the transition function is given as δ : Q×Σ → Q and the initial states consist of a

single initial state qo, then it is called deterministic. An ω-language that is marked by

G is defined by

L(G) := {w ∈ Σω | Inf(w)∩Qm 6= /0},

with

Inf(w) := {q ∈ Q | ∃ infinitely many s < w s.th. δ (qo,s) = q}.

It represents all strings that correspond to paths that infinitely often pass marked states.

Example 2.2.2

The finite-state automaton in Figure 2.1 is considered and the represented ω-language

is analysed. Since the automaton is deterministic, the ω-language is given as the limit

of the ∗-language, i.e. L(G) = lim(Lm(G)) = lim((ab(cb)∗d)∗) = (ab(cb)∗d)ω . �

Note that L ⊆ Σω is ω-regular, if it is accepted by a Büchi automaton; see also

(McNaughton, 1966). Moreover, if an ω-language can be represented as the limit of

a regular ∗-language, it is accepted by a deterministic Büchi automaton. It is a well-

known fact that there are Büchi recognizable languages that can be represented by a

non-deterministic Büchi automaton, but it is not possible to represent them by a de-

terministic Büchi automaton; see e.g. (Mukund, 1996) for further details. Hence, non-

deterministic Büchi automata languages are strictly more powerful than the determin-

istic ones. The deterministic Rabin automaton is an alternative model that recognizes

all ω-regular languages.

Definition 2.2.3 Rabin automaton

A Rabin automaton is given as a five-tuple

G = (Q,Σ,δ ,Qo,Ω),

where Q is the set of states, Σ is the alphabet of events, δ : Q×Σ → 2Q is a transition

function, Qo the set of initial states and Ω = {(F1,I1), ...,(Fn,In)} is a collection of

accepting pairs (Fi,Ii) , where Fi,Ii ⊆ Q. �

An ω-language that is marked by a Rabin automaton G is defined by

L(G) := {w ∈ Σω | Inf(w)∩Fi = /0 and Inf(w)∩Ii 6= /0 for some i ∈ 1, ...,n}.

This language represents all strings that correspond to paths that for some i ∈ 1, ...,n
infinitely often pass states in Ii and only finitely often passes states in Fi. Note that

a Büchi automaton can be trivially transformed into a Rabin automaton by setting

Ω = {(/0,Qm)}.

17

Section 2.2. Representation of formal languages

2.2.3 Constructions on finite-state automata

In the sequel of this thesis, several constructions on finite-state automata are used to

characterize effective solutions. Hence, it is worth presenting some of the most fre-

quently used and interesting constructions at this point. The first operation, that shall

be explained here, is the projection operation. It is based on a construction given in

(Cho and Marcus, 1989a) and similar to the one in (Cassandras and Lafortune, 2008).

Definition 2.2.4 Projection operation

Given a finite-state automaton G = (Q,Σ,δ ,qo,Qm), and the projection po : Σ∗ → Σ∗
o,

with Σo ⊆ Σ. Let the projection poG := ac(X ,Σo,ξ ,xo,Xm) be defined as follows:

X := 2Q − /0, xo := {q ∈ δ (qo,s) | pos = ε},

ξ (x,σ) := {q ∈ δ (q′,s) | q′ ∈ x and pos = σ},

Xm := {x ∈ X | ∃q ∈ x s.th. q ∈ Qm}. �

The operation ac is used to remove not accessible states; see also

(Cassandras and Lafortune, 2008).

For the synchronization of two languages defined on a shared alphabet the product

operation and for different alphabets the synchronous composition operation is used;

see also (Cassandras and Lafortune, 2008).

Definition 2.2.5 Product operation

Given two automata G1 =(Q1,Σ1,δ1,qo,1,Qm,1) and G2 =(Q2,Σ2,δ2, ,qo,2,Qm,2). The

automaton of the product G1 ×G2 := ac(X ,Σ,ξ ,xo,Xm) is defined by

X := Q1 ×Q2, Σ := Σ1 ∩Σ2, xo := (qo,1,qo,2),

ξ ((q1,q2),σ) :=

{

(δ1(q1,σ),δ2(q2,σ)), if δ1(q1,σ)! and δ2(q2,σ)!,

undefined otherwise,

Xm := Qm,1 ×Qm,2. �

For the languages L1,L2 ⊆ Σ∗, represented by G1 and G2, the product is given by

L1 ×L2 := L1 ∩L2.

18

Chapter 2. Preliminaries

Definition 2.2.6 Synchronous composition operation

Given two automata G1 = (Q1,Σ1,δ1,qo,1,Qm,1) and G2 =(Q2,Σ2,δ2, ,qo,2,Qm,2). The

automaton of the synchronous composition G1 ‖G2 := ac(X ,Σ,ξ ,xo,Xm) is defined as

X := Q1 ×Q2,Σ := Σ1 ∪Σ2,xo := (qo,1,qo,2),

ξ ((q1,q2),σ) :=



















(δ1(q1,σ),δ2(q2,σ)), if δ1(q1,σ)! and δ2(q2,σ)!,

(δ1(q1,σ),q2), if δ1(q1,σ)! and σ /∈ Σ2,

(q1,δ2(q2,σ)), if δ2(q2,σ)! and σ /∈ Σ1,

undefined otherwise,

Xm := Qm,1 ×Qm,2. �

For the languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, represented by G1 and G2, the syn-

chronous composition is given by L1 ‖ L2 := (p−1

1 L1) ∩ (p−1

2 L2). Note that for

Σ1 ∩ Σ2 = /0, the synchronous composition is a so called shuffle product; see also

(Cassandras and Lafortune, 2008).

The product construction of two Büchi automata is more involved, since the passing

of the marking of each of the two automata has to be tagged in order to guarantee that

the marking of the resulting automaton accepts only strings for which both original

automata pass infinitely often a marked state. The basic idea is to add a marked state

to the resulting automaton only after alternated passing marked states in both original

automata. Hence, an additional tag is used in order to remember the marking that is

waited for. The following definition is based on (Mukund, 1996).

Definition 2.2.7 ω-product operation

Given two automata G1 = (Q1,Σ1,δ1,qo,1,Qm,1) and G2 =(Q2,Σ2,δ2, ,qo,2,Qm,2). The
automaton of the ω-product G1 ×ω G2 := ac(X ,Σ,ξ ,xo,Xm) is defined as

X := Q1 ×Q2 ×{1,2}, Σ := Σ1 ∩Σ2, xo := (qo,1,qo,2,1),

ξ ((q1,q2,1),σ) :=

{

(δ1(q1,σ),δ2(q2,σ),1), if δ1(q1,σ)!, δ2(q2,σ)! and q1 /∈ Qm,1,

(δ1(q1,σ),δ2(q2,σ),2), if δ1(q1,σ)!, δ2(q2,σ)! and q1 ∈ Qm,1,

ξ ((q1,q2,2),σ) :=

{

(δ1(q1,σ),δ2(q2,σ),2), if δ1(q1,σ)!, δ2(q2,σ)! and q2 /∈ Qm,2,

(δ1(q1,σ),δ2(q2,σ),1), if δ1(q1,σ)!, δ2(q2,σ)! and q2 ∈ Qm,2,

Xm := Q1 ×Qm,2×2. �

The ω-product of two languages L1 ⊆ Σω
1 and L2 ⊆ Σω

2 , represented by G1 and G2, is

given by L1 ×ω L2 := L1 ∩L2.

19

Section 2.2. Representation of formal languages

The construction of the synchronous ω-composition operation is straight forward and

based on the construction in Definition 2.2.6 and the considerations regarding the par-

ticular marking in Definition 2.2.7.

Definition 2.2.8 Synchronous ω-composition operation

Given G1 = (Q1,Σ1,δ1,qo,1,Qm,1), G2 = (Q2,Σ2,δ2, ,qo,2,Qm,2). The automaton of the
synchronous ω-composition G1 ‖ω G2 := ac(X ,Σ,ξ ,xo,Xm) is defined by

X := Q1 ×Q2 ×{1,2}, Σ := Σ1 ∪Σ2, xo := (qo,1,qo,2,1),

ξ ((q1,q2,1),σ) :=



















(δ1(q1,σ),δ2(q2,σ),1), if δ1(q1,σ)!, δ2(q2,σ)! and q1 /∈ Qm,1,

(δ1(q1,σ),δ2(q2,σ),2), if δ1(q1,σ)!, δ2(q2,σ)! and q1 ∈ Qm,1,

(δ1(q1,σ),q2,1), if δ1(q1,σ)!, ,σ /∈ Σ2, and q1 /∈ Qm,1,

(δ1(q1,σ),q2,2), if δ1(q1,σ)!, ,σ /∈ Σ2, and q1 ∈ Qm,1,

ξ ((q1,q2,2),σ) :=



















(δ1(q1,σ),δ2(q2,σ),2), if δ1(q1,σ)!, δ2(q2,σ)! and q2 /∈ Qm,2,

(δ1(q1,σ),δ2(q2,σ),1), if δ1(q1,σ)!, δ2(q2,σ)! and q2 ∈ Qm,2,

(q1,δ2(q2,σ),2), if δ2(q2,σ)!, σ /∈ Σ1, and q2 /∈ Qm,2,

δ2(q2,σ),1), if δ2(q2,σ)!, σ /∈ Σ1, and q2 ∈ Qm,2,

Xm := Q1 ×Qm,2 ×2. �

For L1 ⊆ Σω
1 and L2 ⊆ Σω

2 , represented by G1 and G2, the synchronous ω-composition

is given by L1 ‖ L2 := {w ∈ Σω | pω
1 w ∈ L1 and pω

2 w ∈ L2}, with Σ := Σ1 ∪̇Σ2.

20

Chapter 2. Preliminaries

2.3 Supervisory control of finite string languages

The area of control theory focuses on the systematic design of a controller that interacts

with a dynamical system in a way that a desired behaviour is accomplished. In the case

of discrete event systems, the desired system behaviour is given in form of particular

event sequences that are desired and allowed for the considered dynamical system. A

common approach to solve such control problems, is the analysis of the given system

behaviour based on a mathematical system description, followed by a systematic con-

troller design, that guarantees the fulfilment of the given specifications. For discrete

event systems, formal languages, which have been introduced in Subsection 2.1, are

used for the mathematical description of the system behaviour. The events that occur

in the given physical plant are summarized in the alphabet Σ. Events of this alphabet

are concatenated to event sequences in order to describe the given system behaviour

in form of a formal language L ⊆ Σ∗. Some of the given events can be disabled by a

supervisor. They are called controllable events Σc. Events that cannot be disabled are

called uncontrollable events Σuc. The alphabet of a discrete event system is given by

the union of these disjoint alphabets, i.e. Σ = Σc ∪̇Σuc. Further, the alphabet can be

partitioned into observable Σo and unobservable events Σuo, i.e. Σ = Σo ∪̇Σuo. This

partitioning depends on the observability of the respective events for a controller that

shall interact with the given system. Note that for the scope of this paper, the focus lies

on the specific case where all controllable events are assumed to be observable, i.e.

Σc ⊆ Σo is assumed throughout this thesis.

Given the description of the discrete event system behaviour in form of a language

L ⊆ Σ∗, the purpose of Supervisory Control Theory is the construction of a discrete

event controller that enforces a specified behaviour by applying appropriate control

actions on the given discrete event system. The controller, referred to as supervisor, is

defined in form of the following map.

Definition 2.3.1 Supervisor

A supervisor is defined as a map f : Σ∗ → Γ that specifies for each string s ∈ Σ∗ a

control pattern Γ := {γ ⊆ Σ | Σuc ⊆ γ}. Further, for all s,s′ ∈ Σ∗, with po(s) = po(s
′),

it is f (s) = f (s′). �

Due to the unobservability of some events, a supervisor cannot distinguish between all

strings that occur in the given system without ambiguity. For strings that are equal un-

der projection to the observable alphabet, it is not possible to impose different control

pattern and the supervisor has to enable equal control pattern. For the practical imple-

mentation, a supervisor f can be represented alternatively by a language H ⊆ Σ∗. H is

said to realize a supervisor f , if for each s ∈ Σ∗, eligH(s) = f (s), i.e. the set of active

events is equal to the set of events enabled for the string s by the map f .

21

Section 2.3. Supervisory control of finite string languages

The resulting interaction of plant and supervisor is demonstrated in Figure 2.2. The

system L ⊆ Σ∗ generates event sequences, whereas the supervisor f partially observes

the event sequences. The unobservability is comparable to a mask that allows only

partial information to pass. Based on the observed events sequences, the supervisor

enables appropriate control pattern in order to satisfy a given specification.

System L

Supervisor f

control pattern

event sequences

observed event sequences

Mask

Figure 2.2: Discrete event system under supervision with partial observation

The prefix-closed behaviour of a supervisor interacting with a discrete event system

L is called the local closed-loop behaviour. In the following, the formal definition

according to (Ramadge and Wonham, 1987a) is introduced.

Definition 2.3.2 Local closed-loop behaviour

Given a discrete event system L ⊆ Σ∗ and a supervisor map f : Σ∗ → Γ, the local

closed-loop behaviour 2 (preL) f for L under supervision of f , is defined iteratively by

- ε ∈ (preL) f ,

- sσ ∈ (preL) f , for s ∈ (preL) f , sσ ∈ preL, and σ ∈ f (s),

- no other strings in (preL) f . �

This definition states that, starting with the empty string ε , only those events are al-

lowed in the closed-loop behaviour, that are possible in the given plant dynamics and

enabled by the supervisor f . It is obvious by the definition that (preL) f ⊆ preL and

(preL) f = pre(preL) f . Hence, the closed-loop behaviour is a restriction of the uncon-

trolled local system behaviour preL.

2 In the Supervisory Control Theory it is also denoted as closed behaviour.

22

Chapter 2. Preliminaries

From the local closed-loop behaviour the respective closed-loop behaviour on the

finite-time horizon is deduced.

Definition 2.3.3 Finite-time closed-loop behaviour

It is given a discrete event system L ⊆ Σ∗, a supervisor map f : Σ∗ → Γ and a respective

local closed-loop behaviour (preL) f for L under supervision of f . Then, the finite-time

closed-loop behaviour3 is given by L f := (preL) f ∩L. �

In order to guarantee a non-blocking local behaviour of the plant under supervision,

the supervisor is requested to satisfy the following property.

Definition 2.3.4 Non-blocking supervisor

Given a discrete event system L ⊆ Σ∗, and a supervisor f : Σ∗ → Γ. The supervisor f

is non-blocking w.r.t. L, if (preL) f = pre(L f). �

The property of non-blocking4 guarantees that the given plant satisfies its eventuality

properties, i.e. terminates its tasks, under supervision of f . For every string in the

local closed-loop behaviour it is possible to find a continuation in the local closed-loop

behaviour to strings belonging to the plant behaviour.

In order to describe the given control problem formally, a language property is intro-

duced that is necessary for characterizing those languages that can be generated in a

local closed-loop behaviour.

Definition 2.3.5 Controllability

Given the ∗-languages L, K ⊆ Σ∗, and a set of uncontrollable events Σuc ⊆ Σ, K is said

to be controllable w.r.t. (Σuc, L), if

((preK)Σuc)∩ (preL)⊆ preK. �

Controllability guarantees that the candidate K is actually implementable and does

not try to prohibit events that cannot be disabled. For a detailed discussion see

(Wonham and Ramadge, 1984) and (Ramadge and Wonham, 1987a).

Another language property that includes the unobservability of events is given in the

following definition.

3 In the Supervisory Control Theory it is also denoted as marked behaviour
4 The terminology non-blocking supervisor is shortly used for a supervisor that is non-blocking w.r.t. L.

23

Section 2.3. Supervisory control of finite string languages

Definition 2.3.6 Prefix-Normality

Given the ∗-languages L, K ⊆ Σ∗, and a set of observable events Σo ⊆ Σ, K is said to

be prefix-normal w.r.t. (Σo, L), if

preK = (p−1
o po preK)∩ (preL). �

For a detailed discussion of this property and its relation to the weaker condition of

observability; see e.g. (Lin and Wonham, 1988a) and (Lin and Wonham, 1988b).

2.3.1 Control problem with partial event observation

The control problem for ∗-languages with partial event observation is defined as fol-

lows.

Definition 2.3.7 Control problem with partial event observation

Given a system L ⊆ Σ∗, with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a specification language

E ⊆ Σ∗, find a non-blocking supervisor f : Σ∗ → Γ such that L f ⊆ E. �

Given a plant L interacting with a non-blocking supervisor, the properties of the closed-

loop behaviour and the existence of a non-blocking supervisor map are analysed.

Proposition 2.3.1 (Lin and Wonham, 1988b)

Given a discrete event system L⊆ Σ∗, with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a non-empty

candidate K ⊆ Σ∗, then there exists a non-blocking supervisor map f , such that K = L f

if and only if

L1 K is relatively closed w.r.t. L,

L2 K is controllable w.r.t. (Σuc,L), and

L3 K is prefix-normal w.r.t. (Σo,L). �

Detailed proofs for Proposition 2.3.1 are given in (Lin and Wonham, 1988b), as well

as in (Cieslak et al., 1988) and (Cassandras and Lafortune, 2008).

In order to characterize a solution to the control problem, the set of controllable sub-

languages of a given specification language E ⊆ Σ∗ is denoted by

[C](E) := {K ⊆ E | K is controllable w.r.t. (Σuc,L)}.

The set of all normal sublanguages of a specification E ⊆ Σ∗ is denoted by

[N](E) := {K ⊆ E | K is prefix-normal w.r.t. (Σo,L)}.

24

Chapter 2. Preliminaries

Further, the set of all relatively closed sublanguages w.r.t. L is denoted by

[F](E) := {K ⊆ E | K is relatively closed w.r.t. L}.

The set of controllable, normal and relatively closed sublanguages is denoted by

[CNF](E) := C(E)∩N(E)∩F(E).

In (Ramadge and Wonham, 1987a) and (Cieslak et al., 1988), it has been shown, that

[C](E), [F](E) and [N](E) are non-empty and closed under arbitrary unions. In par-

ticular, [CNF](E) is also non-empty and closed under arbitrary unions. Hence, there

exists a unique supremal element for [CNF](E), which is denoted by sup[CNF](E).
If sup[CNF](E) is non-empty, then there exists a solution to the control problem. In

particular, sup[CNF](E) is the optimal solution to the control problem, denoted also

the minimally restrictive solution K⇑ :=
⋃

{K ⊆ E | K satisfies L1 - L3 }.

Theorem 2.3.2 (Lin and Wonham, 1988b)

Given a discrete event system L ⊆ Σ∗, with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a speci-

fication E ⊆ Σ∗. There exists a non-blocking supervisor f : Σ∗ → Γ w.r.t. L such that

L f ⊆ E, if and only if sup[CNF](E) 6= /0. In particular, K⇑ = sup[CNF](E). �

Following the proofs in (Cieslak et al., 1988) and (Cassandras and Lafortune, 2008),

the respective supervisor to a candidate K ⊆ L satisfying L1 - L3, is deduced by

f (s) := Σuc ∪{σ ∈ Σc | (∃s′σ ∈ preK)[pos′ = pos]}.

Useful formulas for the computation of supremal sublanguages are given in

(Cassandras and Lafortune, 2008) and (Ziller and Cury, 1994a,b). In particular, the

computation of sup[CNF](E) on the basis of finite-state automata is described in

(Cho and Marcus, 1989a), (Yoo et al., 2002) or (Moor et al., 2012).

2.3.2 Control problem with partial observation and completeness

From the control problem under partial observation on the finite-time horizon, a con-

trol problem can be derived, that focuses on the infinite-time horizon. Therefore, the

limit of the system behaviour limL is considered. It is further assumed that L is a

complete language. In order to guarantee a non-blocking behaviour of the plant under

supervision on the infinite-time horizon, the non-blocking property of the supervisor

from Definition 2.3.4 is extended and defined on the basis of limL.

Definition 2.3.8 Non-blocking supervisor

Given a discrete event system L ⊆ Σ∗, and a supervisor f : Σ∗ → Γ. The supervisor f

is non-blocking w.r.t. limL, if (pre limL) f = pre limL f . �

25

Section 2.3. Supervisory control of finite string languages

The system behaviour under supervision of a non-blocking supervisor f is described

by the limit of the finite-time closed-loop behaviour limL f = (lim(preL) f)∩ (limL).
Further note that for a complete language L, the non-blocking property on the finite-

time horizon is a direct consequence of the non-blocking property on the infinite-time

horizon, i.e. preL f = (preL) f . For the given system L under supervision of a non-

blocking supervisor f there can be deduced particular properties for the closed-loop

behaviour.

Proposition 2.3.3

Given a discrete-event system L ⊆ Σ∗, with L is a complete language, Σuo ⊆ Σ, Σuc ⊆ Σ,

Σc ⊆ Σo and non-empty candidate K ⊆ Σ∗, then there exists a supervisor f that is non-

blocking w.r.t. limL, such that limK = limL f if and only if

L0 K is complete,

L1 K is relatively closed w.r.t. L,

L2 K is controllable w.r.t. (Σuc,L),

L3 K is prefix-normal w.r.t. (Σo,L).

Proof. To show sufficiency, assume that K exhibits the above properties. Accord-

ing to (Ramadge and Wonham, 1987a), properties L2 and L3 guarantee the exis-

tence of a supervisor f such that (preL) f = preK. For the infinite-time closed-loop

behaviour, L1 implies that limL f = lim((preL) f ∩ L) = lim(preK ∩ L) = limK. In

particular, f is a non-blocking supervisor for limL, since pre limL f = pre limK =
preK = (preL) f = (pre limL) f . Further, for all s,s′ ∈ Σ∗, with po(s) = po(s

′), it

is f (s) = f (s′), according to Proposition 2.3.1. To show necessity, detailed proofs

for L1 - L3 are given in (Lin and Wonham, 1988b), as well as in (Cieslak et al.,

1988) and (Cassandras and Lafortune, 2008). Regarding L0, select an arbitrary string

s ∈ preK = preL f . By completeness of L and the non-blocking characteristic of the su-

pervisor, observe that s ∈ (prelimL) f = prelimL f . Hence, there exists a string u ∈ Σω ,

such that su ∈ limL f . Consequently, there exists σ ∈ Σ, such that sσ < su and, thus,

sσ ∈ pre limL f = pre limK ⊆ preK. �

The control problem for ∗-languages with partial observation and completeness is

defined.

Definition 2.3.9 Control problem with partial observation and completeness

Given a system L ⊆ Σ∗, with L is complete, Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a spec-

ification language E ⊆ Σ∗, with E is complete, find a supervisor f : Σ∗ → Γ that is

non-blocking w.r.t. limL such that limL f ⊆ limE. �

26

Chapter 2. Preliminaries

In order to characterize a solution to the control problem, the set of complete sub-

languages of a given specification language E ⊆ Σ∗ is denoted by

[O](E) := {K ⊆ E | K is complete }.

The set of complete languages is closed under arbitrary union; see also (Kumar et al.,

1992). A useful formula for the computation of sup[O](E) is also given therein. Fur-

ther, the set of controllable, normal, relatively closed and complete sub-languages of a

given specification language w.r.t. the plant language L is defined by

CNFO(E) = C(E)∩N(E)∩F(E)∩O(E).

Controllability, prefix-normality, relative closedness and completeness are retained

under arbitrary union. In particular, a supremal sub-language that possesses the

above properties exists uniquely and is denoted supCNFO(E). Hence, there exists

a solution to the control problem iff sup[CNFO](E) is non-empty. In particular,

limsup[CNFO](E) is the supremal solution (limK)⇑ to the given control problem.

Theorem 2.3.4

Given a discrete event system L ⊆ Σ∗, with L is complete, Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo,

and a specification E ⊆ Σ∗, with E is complete. There exists a non-blocking supervisor

f : Σ∗ → Γ w.r.t. limL such that limL f ⊆ limE, if and only if sup[CNFO](E) 6= /0. In

particular, (limK)⇑ = limsup[CNFO](E). �

The respective supervisor to a candidate K is again deduced by

f (s) := Σuc ∪{σ ∈ Σc : (∃s′σ ∈ preK)[pos′ = pos]}.

A formula for the computation of the supremal sublanguage is given in (Moor et al.,

2012).

27

3 Monolithic controller design for

ω-languages

The focus of this thesis lies on the development of a hierarchical control architecture

for infinite string languages. In order to describe this set-up, this Chapter introduces

the basic ideas of the monolithic controller design for ω-languages and extends it to a

set-up based on input/output systems, known from the Behavioural System Theory, see

(Willems, 1991), and proven to be an appropriate set-up for hierarchical, abstraction

based controller design, see e.g. (Moor et al., 2011) and (Perk et al., 2008).

Finite automata modelling infinite string languages have been introduced in the 60s, in

publications like (Büchi, 1966) or (McNaughton, 1966) and have been used to solve

decision problems in mathematical logics. In contrast to finite string languages, they

describe system behaviour on the infinite-time horizon and offer the possibility to

model more general liveness properties. Using ω-languages, it is possible to distin-

guish between transient and non-transient behaviour and to model e.g. eventual task

completion or eventual feedback. The area of Temporal Logics is strongly connected

to a representation of system behaviour or specified behaviour by ω-automata and

a detailed classification of liveness properties is given in (Manna and Pnueli, 1990)

and (Baier and Kwiatkowska, 2000). After using ω-languages in this area only for

describing the behaviour of concurrent systems, see (Pnueli and Rosner, 1989), there

have been developed Model Checking techniques that allow for automated synthe-

sis procedures; see e.g. (Emerson and Clarke, 1980) and (Clarke et al., 1986). Those

techniques have been proven to be successful in industrial applications. Hence, the

interest in combining the area of Supervisory Control with the area of Reactive Syn-

thesis and Model Checking is increasing in order to benefit from both approaches; see

(Ziller and Schneider, 2005) and (Ehlers et al., 2014). To close the gap between them,

it is important to focus more on the representation of system behaviour by infinite-

string languages and to further develop existing synthesis methods for ω-languages in

the area of Supervisory Control.

A first approach regarding controller synthesis for ω-languages and a first analysis re-

garding its application areas has already been presented in (Ramadge, 1989). Therein,

the control problem for sequential behaviours under complete event observation and

the characterization of respective solutions has been presented. Further, the challenge

to find a supremal solution has been discussed in detail. In (Kumar et al., 1992) first

29

Chapter 3. Monolithic controller design for ω-languages

results regarding controller design for sequential behaviour under partial observation

are given. However, those results are limited to topologically closed languages, which

are only appropriate for modelling safety properties, see also (Alpern and Schneider,

1985). Those languages can only describe that some critical configuration is not at-

tained. However, for the description that some desired configuration is attained always

eventually, i.e. for the description of liveness properties, not topologically closed be-

haviours have to be used. The liveness property is of particular interest in the context

of hierarchical and abstraction based controller design for large scale systems. In that

context, it is important to guarantee that liveness is given for the overall system of all

concurrent and interacting sub-systems. More general liveness properties in the con-

text of controller design for ω-languages have been analysed in (Thistle and Wonham,

1994a) and (Thistle and Lamouchi, 2009) and algorithm for the computation of solu-

tions are introduced in (Thistle and Wonham, 1992) and (Thistle and Lamouchi, 2009).

Further, in (Moor et al., 2011) it is described an approach for abstraction based con-

troller design for ω-languages, which is the basis for the hierarchical controller design

developed in this thesis.

The present Chapter is organized as follows. In Section 3.1 results and concepts of

Supervisory Control Theory for infinite string languages are revealed. Two different

control problems are considered, control problems for behaviour under complete event

observation and for behaviour under partial event observation. It is illustrated how

to handle the particular liveness characteristics of infinite-time behaviours and how

to design a supervisor that guarantees the satisfaction of a specification that is also

given as an infinite-string language. In addition to the theoretical framework, algo-

rithms for the computation of solutions are investigated in this section. In the second

part of this Chapter, a control problem for ω-languages is introduced which is based

on an input/output system description from Behavioural System Theory and the con-

trol problem for sequential behaviour under partial event observation. This particular

control problem is used in Chapter 4 to set up the hierarchical control framework for

ω-languages.

30

Chapter 3. Monolithic controller design for ω-languages

3.1 Supervisory control of infinite string languages

In Subsection 2.3, the control problem for finite-string languages under partial event

observation and completeness has been developed and it has been pointed out a way

how to solve this particular control problem. In this Subsection, the control problem

for infinite-string languages is described using results from Subsection 2.3.

The behaviour of the uncontrolled system is given by an infinite-string language

L⊆ Σω . Note that the alphabet Σ consists of controllable and uncontrollable, as well

as observable and unobservable events, i.e Σ := Σc ∪̇Σuc = Σo ∪̇Σuo. To influence the

given system in that way that the fulfilment of a given specification E ⊆ Σω is guar-

anteed, a supervisor f according to Definition 2.3.1 shall be designed. The resulting

closed-loop configuration is given in Figure 3.1.

System L

Supervisor f

control pattern

event sequences

observed event sequences

Mask

Figure 3.1: Discrete event system under supervision with partial observation

Further, the closed-loop behaviour of the plant under supervision of f on the infinite-

time horizon is introduced

Definition 3.1.1 Infinite-time closed-loop behaviour

Given a discrete-event system L ⊆ Σω , a supervisor map f : Σ∗ → Γ and the local

closed-loop behaviour (preL) f ⊆ preL, then the infinite-time closed-loop behaviour

L f ⊆ Σω for L under supervision of f is given by

L f := (lim(preL) f)∩L. �

In order to guarantee that the local closed-loop behaviour (preL) f is complete, the

supervisor f is requested to be non-blocking w.r.t. L, see also Definition 2.3.8.

31

Section 3.1. Supervisory control of infinite string languages

Definition 3.1.2 Non-blocking supervisor

Given a discrete-event system L ⊆ Σω and a supervisor f : Σ∗ → Γ, the supervisor is

non-blocking w.r.t. L, if (preL) f = preL f .
1

�

In the following, it is analysed how to design a non-blocking supervisor for a plant

behaviour that is given as a sequential behaviour, with possibly uncontrollable and

unobservable events. The supervisor shall guarantee that the plant satisfies a language

inclusion specification that is given in form of an ω-language.

3.1.1 Control problem under complete event observation

Before analysing the control problem under partial observation, the control problem

under complete observation, is considered. Hence, all events are assumed to be observ-

able, i.e. Σo = Σ. This control problem has been discussed for the first time in detail in

(Ramadge, 1989). In (Kumar et al., 1992) a relevant connection to the ∗-language con-

trol problem involving the property of completeness is illustrated in the case of closed

languages, see also Subsection 2.3.2. Further, in (Thistle and Wonham, 1994a), the

control problem has been further analysed regarding the characterisation of solutions

including as well specifications that are relatively closed w.r.t. the plant behaviour, as

more general specifications.

The control problem for infinite languages with complete event observation is defined

as follows.

Definition 3.1.3 Control problem with complete event observation

Given a system L ⊆ Σω , with Σuc ⊆ Σ, Σo = Σ, and a specification language E ⊆ Σω ,

find a supervisor f : Σ∗ → Γ that is non-blocking w.r.t. L such that L f ⊆ E . �

Considering a system behaviour L⊆ Σω and a supervisor f that is non-blocking w.r.t.

L, the infinite-time closed-loop behaviour L f results to have particular properties, sum-

marized in Proposition 3.1.1. Further, necessary conditions for the existence of a non-

blocking supervisor map f are analysed therein.

1 In the following, the terminology non-blocking supervisor is shortly used for a supervisor that is non-

blocking w.r.t. L.

32

Chapter 3. Monolithic controller design for ω-languages

Proposition 3.1.1 (Ramadge, 1989)

Given L ⊆ Σω , with Σuc ⊆ Σ, Σo = Σ, and a non-empty candidate K ⊆ Σω , then there

exists a non-blocking supervisor f w.r.t. L such that L f = K if and only if

I1 K is relatively closed w.r.t. L,

I2 preK is controllable w.r.t. (Σuc,preL).

Proof. To show sufficiency, assume that K exhibits the above properties. According

to (Ramadge, 1989), non-emptiness of K and property I2 guarantee the existence of a

supervisor f such that (preL) f = preK. With respect to the infinite-time closed-loop

behaviour, I1 implies that L f = (lim(preL) f)∩L= (limpreK)∩L= K. In particular,

f is a non-blocking supervisor for L, since preL f = preK = (preL) f . Further, for all

s,s′ ∈ Σ∗, with po(s) = po(s
′), it is f (s) = f (s′), since all events are observable.

To show necessity, note that property I2 follows by (preL) f = preL f = preK. Regard-

ing property I1, it is (cloK)∩L= (limpreK)∩L= (limpreL f)∩L. Non-blocking of

f w.r.t. L implies that (limpreL f)∩L= (lim(preL) f)∩L. By the definition of L f , it

follows that (lim(preL) f)∩L= L f = K. Hence, (cloK)∩L= K. �

To analyse the existence of a solution to the control problem, the union of all closed-

loop behaviours K that solve the control problem is defined by

K⇑ :=
⋃

{K ⊆ E | K satisfies I1 and I2 }.

However, the set of languages that satisfy I1 is only closed under finite set union, but

not under arbitrary set union. Hence, in general, the existence of a unique supremal

element that satisfies I1 and I2 is not given. Only if the specification language E is

relatively closed w.r.t. L, a unique supremal solution exists.

Lemma 3.1.2 (Ramadge, 1989)

It is given a system L ⊆ Σω , Σuc ⊆ Σ, Σo = Σ and a specification language E ⊆ L, that

is relatively closed w.r.t. L. Then, a unique supremal sub-language of E that satisfies I1

and I2 exists. �

Hence, consider a specification E ⊆ Σω that is relatively closed. In addition, plant and

specification languages are representable as limits of regular ∗-languages, i.e. L =
limL and E = limE. Further, define that L is complete. Given relative closedness of

E , it is readily verified that E = lim(preE ∩ L). Thus, without loss of generality, it is

assumed that E is relatively prefix-closed w.r.t. L. Then, the supremal solution K⇑ of

the control problem can be characterised on the basis of the properties L0 - L2, see

also Subsection 2.3.2.

33

Section 3.1. Supervisory control of infinite string languages

Theorem 3.1.3

Consider a control problem given by a system L ⊆ Σω , with Σuc ⊆ Σ, Σo = Σ and a

specification E ⊆ L. Assume that E is relatively topologically closed w.r.t. L, and that

both L and E can be represented as limits of regular ∗-languages L= limL, E = limE,

where L ⊆ Σ∗ is complete and E = (preE)∩L. Then limsup[CFO](E) is the supremal

solution K⇑ to the control problem.

Proof. To show limsup[CFO](E) ⊆ K⇑, consider an arbitrary K ∈ [CFO](E) and de-

note K := limK. By property L0, it is preK = preK and, hence, by Proposition 2.3.3

and property L2, K satisfies the property I2. Further, by property L1, it is cloK∩L =
(limpreK)∩(limL) = lim(preK∩L) = limK =K. Finally, by K ⊆E, it is K⊆ E . Con-

sequently, limsup[CFO](E)⊆ K⇑. Vice versa, by Lemma 3.1.2 K⇑ ⊆ E and K⇑ satis-

fies I1 and I2. Further, by Proposition 3.1.1, there exists a non-blocking supervisor f

such that K⇑ = limL f . Thus, by Proposition 2.3.3, it follows that K := (preL) f ∩ L

satisfies L0 - L2. By non-blocking of f , observe that further K = (preL) f ∩ L =
(pre limL f)∩L = (preK⇑)∩L. Finally, K = (preK⇑)∩L ⊆ (preE)∩L = E. This con-

cludes the proof of K⇑ ⊆ limsup[CFO](E). �

Consequently, if a non-empty solution to the given control problem exists, it is given

by K⇑ = limsup[CFO](E). A formula for the computation of sup[CFO](E), is given in

(Moor et al., 2012).

However, requesting relative closedness of E w.r.t. L is restrictive. In particular, the

control problem developed in Subsection 3.2 is based on specifications that are, in

general, not relatively closed. For the general case, it is therefore developed an alter-

native characterisation of a solution to the control problem.

Definition 3.1.4 ω-controllability

Given a system L ⊆ Σω , with Σuc ⊆ Σ, Σo = Σ, and the candidate K ⊆ Σω . Then, K is

said to be ω-controllable w.r.t. (Σuc, L), if for all s ∈ (preL)∩ (preK) there exists a

Vs ⊆ L∩K with s ∈ preVs, and

C1 Vs is relatively topologically closed w.r.t. L, and

C2 preVs is controllable w.r.t. (Σuc, preL). �

Given this alternative controllability characterisation, it has to be proven that properties

I1 and I2 can be substituted by ω-controllability. Therefore, it is first shown that any

K ⊆ E that satisfies I1 and I2 is indeed ω-controllable w.r.t. (Σuc,L).

34

Chapter 3. Monolithic controller design for ω-languages

Proposition 3.1.4

Given the languages L⊆ Σω , with Σuc ⊆ Σ, Σo = Σ and K⊆ Σω . If preK is controllable

w.r.t. (Σuc,preL) and K is relatively closed w.r.t. L, then K is ω-controllable w.r.t.

(Σuc,L).

Proof. To show ω-controllability, select an arbitrary s∈ (preL)∩(preK). Define Vs :=
K and observe, that Vs satisfies C1 and C2 and s ∈ preVs. Further Vs =K= cloK∩L=
K∩L. Thus, K is ω-controllable w.r.t. (Σuc,L). �

Like I1 and I2 in the case of relatively closed specifications, the property of

ω-controllability guarantees the existence of an appropriate non-blocking supervisor

map f such that the behaviour of the infinite-time closed-loop system satisfies L f ⊆ E .

Proposition 3.1.5

Given the languages L ⊆ Σω , with Σuc ⊆ Σ, Σo = Σ and K ⊆ Σω , K 6= /0. If K is ω-

controllable w.r.t. (Σuc,L), then there exists a non-blocking supervisor f : Σ∗ → Γ w.r.t.

L such that L f ⊆ K.

Proof. Assume that K exhibits the above properties. According to Definition 3.1.4, for

every s ∈ preK there exists Vs ⊆ K, satisfying C1 and C2. By definition, ε ∈ preK.

Hence, there exists Vε ⊆ K∩L satisfying C1 and C2, i.e. Vε is relatively closed w.r.t.

L and preVε is controllable w.r.t. (Σuc,preL). Hence, Vε satisfies I1 and I2. By Propo-

sition 3.1.1, there exists a non-blocking supervisor map f such that L f = Vε . Since,

Vε ⊆ K∩L it follows that L f ⊆ K. �

The subset of ω-controllable languages of a given specification E ⊆ Σω is denoted by

[Cω
co](E) := {K ⊆ E | K is ω-controllable w.r.t. (Σuc,L)}.

In contrast to property I1, ω-controllability is preserved under arbitrary unions.

Lemma 3.1.6

It is given the language L ⊆ Σω , with Σuc ⊆ Σ. Consider a family of languages Ka ⊆
Σω , a ∈ A, each one ω-controllable w.r.t. (Σuc, L). Then, the union K := ∪a∈AKa is

ω-controllable w.r.t. (Σuc, L), too.

Proof. Pick an arbitrary prefix s ∈ (preK). By preK = ∪a∈A preKa, it is possible to

choose a ∈ A such that s ∈ preKa. Since Ka is ω-controllable w.r.t. (Σuc, L) by def-

inition, it is possible to choose Vs ⊆ Ka, satisfying conditions C1 and C2 from Defi-

nition 3.1.4. Clearly, Vs ⊆ K and ω-controllability of K w.r.t (Σuc,L) has been estab-

lished. �

35

Section 3.1. Supervisory control of infinite string languages

Hence, there exists a unique supremal element, which is denoted by sup[Cω
co](E).

In particular, the least upper bound of the closed-loop behaviours K⇑ is equal to

sup[Cω
co](E).

Proposition 3.1.7 (Moor et al., 2011)

Given a system L⊆ Σω , with Σuc ⊆ Σ, and a specification language E ⊆ Σω . Then, the

union of all closed-loop behaviours K that solve the control problem is equal to the

supremal ω-controllable sub-language of E , i.e. K⇑ = sup[Cω
co](E).

Proof. To show that K⇑ ⊆ sup[Cω
co](E), pick s ∈ (preL)∩ (preK⇑). Since the prefix

operator distributes over arbitrary unions, there exists a component K of the union

representation K⇑, with s ∈ preK, K ⊆ E , and K satisfies C1 and C2. In particular,

K⊆L∩K⇑. Hence, K⇑ is ω-controllable w.r.t. (Σuc, L). By supremality of sup[Cω
co](E)

follows that K⇑ ⊆ sup[Cω
co](E). To show that sup[Cω

co](E)⊆ K⇑, pick an arbitrary w ∈
sup[Cω

co](E) and recall that for each prefix s < w, there exists Vs satisfying C1 and C2.

Based on Vs, construct for all s < w a component K of the union representation, in

order to obtain w ∈ K⇑. Let Ks := {v ∈ Vs | v(|s|) = w(|s|) and v(|s|+1) 6= w(|s|+1)} and

consider the candidate K := (∪s<wKs)∪ {w}. Observe that the union is disjoint by

construction. Further, for v ∈ K and v 6= w, v ∈ Kr, where r is the maximal prefix r < v

such that r < w. To show I1, pick an arbitrary v ∈ cloK∩L. If v = w, then it is v ∈ K,

by definition. If v 6= w, pick the maximal prefix r < v such that r < w. Then, any t < v

it is t ∈ preKr and, hence, v ∈ pre limKr. By C1 follows that v ∈ Kr ⊆ K. To show

I2, pick s ∈ preK and σ ∈ Σuc such that sσ ∈ preL. If sσ < w, then w ∈ K implies

that sσ ∈ preK. If sσ ≮ w, pick the maximal prefix r < sσ such that r < w. Then,

s ∈ preKr ⊆ preVr, and, by C2, sσ ∈ preVr. By definition, sσ ∈ preKr. This concludes

the proof of sup[Cω
co](E) = K⇑. �

As a consequence, a solution to the control problem for infinite behaviours under com-

plete observation does only exist, if sup[Cω
co](E) 6= /0. Note further that a unique max-

imal solution to the control problem exists if and only if sup[Cω
co] is relatively closed

w.r.t. L. In particular, in that case, sup[Cω
co](E) is the unique maximal solution. Detailed

formulas for the computation of sup[Cω
co](E) will be further illustrated in Section 3.1.3.

3.1.2 Control problem under partial event observation

First considerations regarding the control problem for infinite string languages under

partial event observation are given in (Kumar et al., 1992), however only for the case of

closed languages. In (Thistle and Lamouchi, 2009) the control problem under partial

observation has been solved for the more general case and a computational procedure

has been presented that is based on a language representation by Rabin automata. How-

ever, this procedure requires the plant behaviour to be closed. Further, it includes the

36

Chapter 3. Monolithic controller design for ω-languages

case of unobservable controllable events, that is not considered in this thesis. A more

general approach and a more general synthesis procedure, motivated by similar control

problems in the area of program synthesis, is given in (Kupferman and Vardi, 2000).

This approach is based on alternating tree automata and reduces the solvability of the

control synthesis problem to the non-emptiness problem for alternating automata on

infinite trees. In this thesis the control problem under partial event observation for in-

finite string languages is developed following the illustrations of the control problem

under complete observation in Subsection 3.1.1. It is considered a system behaviour

L ⊆ Σω with uncontrollable and unobservable events, i.e. Σuc ⊆ Σ and Σuo ⊆ Σ. A

supervisor f that is non-blocking w.r.t. L shall be synthesised such that a given specifi-

cation language E ⊆ Σω is satisfied. The control problem with partial event observation

is defined.

Definition 3.1.5 Control problem with partial event observation

Given a system L ⊆ Σω , with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a specification E ⊆ Σω ,

find a supervisor f : Σ∗ → Γ that is non-blocking w.r.t. L such that L f ⊆ E . �

Given a supervisor f that is non-blocking w.r.t. L, the infinite-time closed-loop be-

haviour L f results to have the properties I1 - I3, given in the proposition below. Nec-

essary conditions for the existence of a non-blocking supervisor map f are derived.

Proposition 3.1.8

Given L ⊆ Σω , with Σuc ⊆ Σ,Σuo ⊆ Σ,Σc ⊆ Σo, and a non-empty K ⊆ Σω . Then, there

exists a non-blocking supervisor map f w.r.t. L such that the infinite-time closed-loop

system L f = K if and only if

I1 K is relatively closed w.r.t. L,

I2 preK is controllable w.r.t. (Σuc,preL),

I3 preK is prefix-normal w.r.t. (Σo,preL).

Proof. To show sufficiency, assume that K exhibits the above properties. From I2 and

I3 follows directly, that preK satisfies L2 and L3 according to Proposition 2.3.1. Prop-

erties L2 and L3 guarantee the existence of a supervisor f such that (preL) f = preK.

In particular, f is a non-blocking supervisor for L, since preL f = preK = (preL) f .

For the infinite-time closed-loop behaviour, recall that, according to the definition of

L f and non-blocking of f w.r.t. L, L f = (lim(preL) f)∩L = (limpreL f)∩L. By I1,

it follows that (limpreL f)∩L = (limpreK)∩L = K. Further, for all s,s′ ∈ Σ∗, with

po(s) = po(s
′), it is f (s) = f (s′), according to Proposition 2.3.1. To show necessity,

recall that I1 has been proven in Proposition 3.1.1. I2 and I3 are a direct consequence

of preL f = (preL) f and L2, as well as L3, according to Proposition 2.3.1. �

37

Section 3.1. Supervisory control of infinite string languages

To analyse the existence of a solution to the control problem, the union of all closed-

loop behaviours K that solve the control problem is defined by

K⇑ :=
⋃

{K ⊆ E | K satisfies I1 - I3 }.

However, the set of languages that satisfy I1 is only closed under finite set union, but

not under arbitrary set union, as already commented in Subsection 3.1.1. Hence, in

general, the existence of a unique supremal element that satisfies I1 - I3 is not given.

Nevertheless, a unique supremal solution exists also in the case of partial observation,

given that the specification E is relatively closed w.r.t. L.

Lemma 3.1.9

It is given a system L ⊆ Σω , Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a specification language

E ⊆L, that is relatively closed w.r.t. L. Then, a unique supremal sub-language of E that

satisfies I1 - I3 exists.

Proof. This Lemma is a direct consequence of Lemma 3.1.2 and the fact that the set of

prefix-normal languages is non-empty and prefix-normality is retained under arbitrary

unions. �

If the specification is relatively closed and if plant and specification languages are rep-

resentable as limits of regular ∗-languages, then the supremal solution of the control

problem can be characterised on the basis of the properties L0 - L3, see also Subsec-

tion 2.3.2.

Theorem 3.1.10

Consider a control problem given by a system L⊆ Σω , with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo,

and a specification E ⊆ L. Assume that E is relatively topologically closed w.r.t. L, and

that both L and E are represented as limits of regular ∗-languages L= limL, E = limE,

where L⊆Σ∗ is complete and E =(preE)∩L. Then, limsup[CNFO](E) is the supremal

solution K⇑ to the control problem under partial observation.

Proof. To show limsup[CNFO](E) ⊆ K⇑, consider an arbitrary K ∈ [CNFO](E) and

denote K := limK. By property L0, it is preK= preK and, hence, by Proposition 2.3.4

and properties L2 and L3, K satisfies the properties I2 and I3. Further, by property L1,

it is cloK∩L = (limpreK)∩ (limL) = lim(preK ∩L) = limK = K. Finally, by K ⊆
E, it is K ⊆ E . Consequently, limsup[CNFO](E) ⊆ K⇑. Vice versa, by Lemma 3.1.9,

K⇑ ⊆ E and K⇑ satisfies I1 - I3. Further, by Proposition 3.1.8, there exists a non-

blocking supervisor f such that K⇑ = limL f . Thus, by Proposition 2.3.3, it follows

that K := (preL) f ∩L satisfies L0 - L3. By non-blocking of f , observe that furthermore

38

Chapter 3. Monolithic controller design for ω-languages

K = (preL) f ∩L= (prelimL f)∩L= (preK⇑)∩L. Finally, K = (preK⇑)∩L⊆ (preE)∩
L = E. This concludes the proof of K⇑ ⊆ limsup[CNFO](E). �

Consequently, if in that particular case a non-empty solution to the given control prob-

lem exists, it is given by K⇑ = limsup[CNFO](E). A formula for the computation of

sup[CNFO](E), is given in (Moor et al., 2012). Note that, due to natural projection op-

erations and the construction of observer automata, the computational complexity is

exponential in the number of plant and specification states.

However, in this thesis, the case of not necessarily relatively closed specifications is

also considered, in particular in Chapter 4. Hence, an alternative characterisation for

I1 - I3 is required to analyse the existence of solutions to the control problem.

Definition 3.1.6 ω-admissibility

Given a system L ⊆ Σω , with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and the candidate K ⊆ Σω ,

then, K is said to be ω-admissible w.r.t. (Σuc, Σo, L), if for all s ∈ (preL)∩ (preK),
there exists a Vs ⊆ L∩K with s ∈ preVs, and

C1 Vs is relatively topologically closed w.r.t. L,

C2 preVs is controllable w.r.t. (Σuc, preL),

C3 preVs is prefix-normal w.r.t. (Σo, preL). �

It has to be analysed, whether this property is an alternative characterisation for I1 - I3.

Therefore, it is first shown that any K⊆ E that satisfies I1 - I3 is indeed ω-controllable

w.r.t. (Σuc, Σo, L).

Proposition 3.1.11

Given a system L ⊆ Σω , with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and a candidate K ⊆ Σω .

If preK is controllable w.r.t. (Σuc,preL), prefix-normal w.r.t. (Σuc,Σo,preL) and K is

relatively closed w.r.t. L, then K is ω-admissible w.r.t. (Σuc,Σo,L).

Proof. To show ω-controllability, select an arbitrary s∈ (preL)∩(preK). Define Vs :=
K and observe, that Vs satisfies C1 - C3 and s ∈ preVs. Further Vs = K = cloK∩L =
K∩L. Thus, K is ω-admissible w.r.t. (Σuc,Σo,L). �

Vice versa, it can be shown, that ω-admissibility guarantees the existence of a non-

blocking supervisor f such that the control problem is solved.

39

Section 3.1. Supervisory control of infinite string languages

Proposition 3.1.12

Given L ⊆ Σω , with Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, and K ⊆ Σω , K 6= /0, such that K is

ω-admissible w.r.t. (Σuc,Σo,L). Then, there exists a non-blocking supervisor f such

that L f ⊆ K.

Proof. Assume that K exhibits the above properties. According to Definition 3.1.6, for

every s∈ preK there exists Vs ⊆K, satisfying C1 - C3. By definition, ε ∈ preK. Hence,

there exists Vε ⊆ K∩L satisfying C1 - C3. In particular, Vε satisfies I1 - I3, and by

Proposition 3.1.8, there exists a non-blocking supervisor f such that L f = Vε ⊆K. �

The subset of ω-admissible languages of a given specification E ⊆ Σω is denoted

[Cω
po](E) := {K ⊆ E | K is ω-admissible w.r.t. (Σuc,Σo,L)}.

Note that ω-admissibility is retained under arbitrary union. Hence, given a specifica-

tion E ⊆ L, the supremal ω-admissible sub-language K⇑ exists uniquely.

Lemma 3.1.13

Let Σuc ⊆ Σ, Σuo ⊆ Σ, Σc ⊆ Σo, L⊆ Σω , and consider a family of languages Ka ⊆ Σω ,

a ∈ A, each one ω-admissible w.r.t. (Σuc, Σo, L). Then, the union K := ∪a∈AKa is ω-

admissible, too.

Proof. Pick an arbitrary prefix s ∈ (preL) ∩ (preK). By preK= ∪a∈A preKa, it is pos-

sible to choose a ∈ A such that s ∈ preKa. Since Ka is considered ω-admissible, it is

also possible to choose Vs ⊆ L∩Ka, s ∈ preVs to satisfy C1 - C3. Clearly, Vs ⊆ L∩K,

and ω-admissibility of K has been established. �

Hence, there exists a unique supremal element, which is denoted by sup[Cω
po](E). Fur-

ther, a unique supremal solution of the control problem exists iff sup[Cω
po] is relatively

closed w.r.t. L. In particular, in that case, sup[Cω
po](E) is the unique maximal solution.

3.1.3 Algorithmic solutions for infinite-string control problems

When it comes to practical applications, algorithms on the basis of finite-state au-

tomata are required that compute solutions to the presented control problems. For the

case of control problems with ∗-languages, as well as ω-languages with relatively

closed specifications, respective algorithms and useful references have been mentioned

in Subsections 3.1.1 and 3.1.2. The purpose of this part of the thesis, is the illustra-

tion and the development of algorithms for the infinite string language control prob-

lem involving more general liveness properties. The basic concept follows the ideas

40

Chapter 3. Monolithic controller design for ω-languages

in (Thistle and Wonham, 1992, 1994b), where an algorithm for the control problem

under complete observation has been presented. Therefore, an alternative characterisa-

tion of ω-controllability, which was first introduced in (Thistle and Wonham, 1994b),

is given in Subsection 3.1.3.1. In Subsection 3.1.3.2, an algorithm to solve the con-

trol problem is formulated on the basis of the fixpoint theory. In Subsection 3.1.3.3,

the algorithm for the control problem under complete observation is illustrated, which

has been developed originally in (Thistle and Wonham, 1992). The respective results

are applied in Subsection 3.1.3.4 to develop a comparable heuristic algorithm for the

control problem under partial observation.

3.1.3.1 Alternative ω-controllability characterisation

Following the ideas in (Thistle and Wonham, 1994a), an alternative definition of

controllability in the context of ω-languages is introduced, which is later on used

to characterize the algorithmic implementation. It is based on a particular prefix-

characterisation, called controllability-prefix.

Definition 3.1.7 Controllability-prefix

For the languages L ⊆ Σω , Σo = Σ, Σuc ⊆ Σ, and K ⊆ Σω , the controllability-prefix

cpcoL(K) is defined as the set of strings s ∈ preK for which there exists Vs ⊆K/s with

A0 Vs 6= /0,

A1 Vs is relatively closed w.r.t. L/s,

A2 preVs is controllable w.r.t. (Σuc,pre(L/s)). �

The controllability-prefix represents the set of all strings in preK whose infinite ex-

tensions can be controlled to belong to K. In particular the controllability-prefix is an

alternative characterisation of the ω-controllability according to Definition 3.1.4.

Proposition 3.1.14

Given the languages L ⊆ Σω , with Σuc ⊆ Σ and Σo = Σ, and K ⊆ Σω , then K is ω-

controllable w.r.t. (Σuc,L), if and only if cpcoL(K) = preK.

Proof. To show sufficiency, select an arbitrary s∈ (preL)∩(preK) and show that there

exists Vs ⊆ L∩K such that s ∈ preVs and C1 and C2 are satisfied. The set of prefixes

of s are defined as T := {t ∈ Σ∗ | t ≤ s}. Observe that s ∈ cpcoL(K) and preK =
cpcoL(K) implies that t ∈ cpcoL(K). Hence, for every t ∈ T there exists Vt ⊆ (L∩
K)/s such that A0 - A2. Based on this considerations, the candidate Vs :=

⋃

t∈T tVt

is defined for s. Observe that s ∈ preVs and Vs ⊆ L∩K by definition. Regarding C1,

41

Section 3.1. Supervisory control of infinite string languages

observe that Vs ⊆ (limpreVs)∩L is always true. To show the reverse direction, pick

w∈ (limpreVs)∩L. Then, there exists t ∈ T such that w∈L∩(limpre tVt). Since t is of

finite length, the existence of an increasing sequence (vn) ∈ preVt such that t lim(vn) =
w can be deduced. By A1 follows that lim(vn) ∈ (limpreVt)∩L/t = Vt . Hence, w ∈
tVt ⊆ Vs. Regarding C2, select an arbitrary ŝ ∈ preVs and σ ∈ Σuc such that ŝσ ∈ preL.

Since ŝ ∈ preVs, there exists t ∈ T such that ŝ ∈ t preVt . Due to controllability of preVt

w.r.t. (Σuc,preL/t), it follows that ŝσ/t ∈ preVt . Thus, ŝσ ∈ preVs. Thus, sufficiency

has been shown. To show necessity, pick an arbitrary s ∈ preK and show that there

exists Vs ⊆ K/s such that A0 - A2 are satisfied. Due to ω-admissibility, according

to Definition 3.1.4, there exists V̂s satisfying C1 and C2. The candidate Vs := V̂s/s

is selected. Since V̂s ⊆ Σω and s ∈ pre V̂s, there exists v ∈ Σω such that v ∈ Vs and,

hence, Vs 6= /0, satisfying A0. A1 and A2 follow directly from results of Proposition 4.3

in (Thistle and Wonham, 1994a) regarding controllability and relative closure under

quotient operator. Finally, equality of both properties has been shown. �

The particular definition of the controllability-prefix can now be used to define a pro-

cedure to compute a solution of the control problem under complete observation.

3.1.3.2 Fixpoint theory

For the elaboration of a synthesis procedure a special notation for extremal fixpoints of

monotone operators on lattices is used in (Thistle and Wonham, 1994a), inspired by its

application in the area of model checking in (Emerson and Lei, 1986). This particular

framework, the so called µ-Calculus, has been developed in order to test automata

for different properties. Some properties can be tested state by state. More involved

properties have to be tested by a complex tree analysis. The fixpoint theory offers a

framework for a respective recursive computation procedure. Hence, basic concepts of

the fixpoint theory are illustrated in the following.

An operator f : (2X)k → 2X is said to be monotone if, for 1 ≤ i ≤ k and any subsets

Xi,X
′
i ⊆ X ,

Xi ⊆ X j ⇒ f (X1, ...,Xi, ...,Xk)⊆ f (X1, ...,X
′
i , ...,Xk),

i.e. it preserves inclusion. Further, the operator f is said to be
⋃

-continuous, if for any

i, with 1 ≤ i ≤ k, and a non-decreasing sequence X0
i ⊆ X1

i ⊆ X2
i ..., it is

∞
⋃

j=0

f (X1, ...,X
j

i , ...,Xk) = f (X1, ...,
∞
⋃

j=0

X
j

i , ...,Xk).

42

Chapter 3. Monolithic controller design for ω-languages

The operator f is said to be
⋂

-continuous, if for any i, with 1 ≤ i ≤ k, and a non-

increasing sequence X0
i ⊇ X1

i ⊇ X2
i ..., it is

∞
⋂

j=0

f (X1, ...,X
j

i , ...,Xk) = f (X1, ...,
∞
⋂

j=0

X
j

i , ...,Xk).

According to (Emerson and Lei, 1986), both continuities imply monotonicity. Further,

for a finite set X any monotone operator is
⋃

-continuous and
⋂

-continuous. From the

results in (Tarski, 1955) follows that such an operator has least and greatest fixpoints.

The least fixpoint Y ⊆ X of an operator such that f (Y) = Y is denoted by µY. f (Y).
The greatest fixpoint Y ⊆ X of an operator such that f (Y) = Y is denoted by νY. f (Y),
respectively. According to (Tarski, 1955), these solutions are known to satisfy the fol-

lowing properties.

Proposition 3.1.15 (Tarski-Knaster)

Let f : 2X → 2X be a monotone operator. Then f has least and greatest fixpoints, i.e.

(a) µY. f (Y) =
⋂

{Y ′ ⊆ X : Y ′ = f (Y)}=
⋂

{Y ′ ⊆ X : Y ′ ⊇ f (Y ′)},

b) νY. f (Y) =
⋃

{Y ′ ⊆ X : Y ′ = f (Y)}=
⋃

{Y ′ ⊆ X : Y ′ ⊆ f (Y ′)},

c) If f is
⋃

-continuous, then µY. f (Y) =
⋃∞

i=0 f i(/0),

d) If f is
⋂

-continuous, then νY. f (Y) =
⋂∞

i=0 f i(X). �

Given a finite set X and a monotone operator f , the least fixpoint of f can be ob-

tained by a recursive iteration starting with X0 = /0 and computing Xi+1 = f (Xi) until

X j = X j−1 for some j. The greatest fixpoint can be received by a similar iteration,

but starting with X0 = X . Hence, the greatest fixpoint can be used to synthesise the

greatest set of states, where some property is always satisfied. Whereas the least fix-

point determines the greatest set of states, from where some property is always reached

eventually.

3.1.3.3 Algorithmic solution in the case of complete observation

For the computation of a solution to the control problem in the case of complete event

observation an iterative procedure is proposed in (Thistle and Wonham, 1992) that

computes a representation of the controllability-prefix (according to Definition 3.1.7).

For this computation, it is convenient to represent all necessary information in just

one automaton. In Thistle and Wonham (1992) a so called Rabin-Büchi automaton is

used, representing two liveness properties. The first one is the liveness property of the

plant itself, given in form of the Büchi acceptance criterion. The second one represents

the eventuality properties of the specification, given in form of a Rabin acceptance

43

Section 3.1. Supervisory control of infinite string languages

criterion. However, in this thesis only Büchi automata are considered. Therefore, just

another Büchi acceptance criterion is used for the eventuality properties of the specifi-

cation and the extended Büchi automaton is defined as follows.

Definition 3.1.8 Extended Büchi automaton

An extended Büchi automaton is given as a six-tuple A := (X ,Σ,δ ,xo,XK,XL), where

X is the set of states, Σ is the alphabet of events, δ : X ×Σ → X is a transition function,

xo the initial state, XK the set of marked states according to the specification E ⊆ Σω

and XL the set of marked states according to the respective plant L⊆ Σω . �

The extended Büchi automaton represents two different ω-languages. The first one is

the ω-language accepted by the Büchi automaton AK := (X ,Σ,δ ,xo,XK), given by

L(AK) := {w ∈ Σω | Inf (w)∩XK 6= /0}.

It represents a liveness property associated with the given specification. Further, the ex-

tended Büchi automaton represents the ω-language accepted by the Büchi automaton

AL := (X ,Σ,δ ,xo,XL),

L(AL) := {w ∈ Σω | Inf (w)∩XL 6= /0},

which is used to represent the liveness properties of the plant. Given two Büchi au-

tomata AL and AK, representing plant and specification language, it is straight forward

to receive an extended Büchi automaton, applying the synchronous ω-composition op-

eration in Definition 2.2.8 to AK and AL and tracking the set of states in the resulting

automaton A that contain a marked state of AL. For the discussion of strings that do not

begin in the initial state, define Ax to be the automaton obtained by setting the initial

state of the automaton A to x. Following (Thistle and Wonham, 1992), the subset of

controllable states under complete event observation is defined.

Definition 3.1.9 Controllability state subset under complete observation

Given an extended Büchi automaton A := (X ,Σ,δ ,xo,XK,XL), with AL =
(X ,Σ,δ ,xo,XL) and AK = (X ,Σ,δ ,xo,XK), the controllability state subset FA is de-

fined as the set of all x ∈ X for which there exists a supervisor f A : Σ∗ → Γ such that

(i) for any s ∈ Σ∗ generated by Ax under f A, there exists v ∈ Σω such that sv is

accepted by AL,x under f A,

(ii) every w ∈ Σω accepted by AL,x under f A is accepted by AK,x. �

The controllability state subset represents the set of states from where the automaton

can be controlled to satisfy the liveness properties given by the specification. Based

44

Chapter 3. Monolithic controller design for ω-languages

on the µ-Calculus approach, in (Thistle and Wonham, 1992) and (Thistle, 1995) an

algorithm for the computation of the controllability state subset is developed. For con-

venience, the algorithm is simplified here to the control problem given by the extended

Büchi automaton instead of treating Rabin-Büchi automata. Basically, the fix-point

calculus is a recursive procedure applying in each step particular operators, either in

order to compute a greatest or a least fix-point. The algorithm in (Thistle and Wonham,

1992) is a nested construct of several such operators computing greatest and least fix-

points. The fundamental and innermost operator that analyses the given states regard-

ing a particular controllability property, is the one-step operator.

Definition 3.1.10 One-Step operator

Let A := (X ,Σ,δ ,xo,XK,XL) be an extended Büchi automaton. The one-step operator

ΘA : (2X)2 → 2X is given by

ΘA(X1,X2) := {x ∈ X | (∃γ ∈ Γ)[(∃σ ∈ γ)[δ (x,σ)! and δ (x,σ) ∈ X1] and

(∀σ ∈ γ)[δ (x,σ)! ⇒ δ (x,σ) ∈ X1 ∪X2)]]}. �

Note that Θ(X1,X2) is a monotone operator, i.e. it preserves inclusion. This operator

forms the core of the algorithm in the inner-most loop. It determines the state subset

from which the automaton can be controlled to enter a given domain X1 ∪X2 by the

next transition without being prevented from entering a given target state set X1. The

next operator, the inverse dynamics operator, calls the one-step operator and iterates

the target, as well as the domain state set.

Definition 3.1.11 Inverse dynamics operator

Let A := (X ,Σ,δ ,xo,XK,XL) be an extended Büchi automaton. The inverse dynamics

operator Θ̃ : 2X → 2X is given by

Θ̃(X1) := νX2.µX3.[Θ(X1 ∪ (X3\XL),X2\XL)]. �

The inverse dynamics operator determines the set of states from which the automaton

can be controlled to enter the target state set no later than passing a plant marking XL.

The last operator is the reachability operator.

Definition 3.1.12 Reachability operator

Let A := (X ,Σ,δ ,xo,XK,XL) be an extended Büchi automaton. The reachability oper-

ator Φ : 2X → 2X is given by

Φ(X1) := µX2.[Θ̃(X1 ∪X2)]. �

45

Section 3.1. Supervisory control of infinite string languages

The difference between this operator and the underlying operator is the addition of

XL\XK states to the target state set, given that they satisfy the condition in the inner-

most loop. Hence, the set of states is determined from which the automaton can be

controlled to reach the target states after passing no more than finitely often states in

XL\XK. In the last step, the fix-point characterization of the controllability state set is

given.

Definition 3.1.13 Fix-point characterization of the controllability state set

Let A := (X ,Σ,δ ,xo,XK,XL) be an extended Büchi automaton. Then, the fix-point

characterization of the controllability state set CA ⊆ X is given by

CA := µX1.νX2.[Φ(X1 ∪ (X2 ∩XK))]. �

According to (Thistle and Wonham, 1992), this algorithm computes the controllability

state subset under complete observation.

Theorem 3.1.16 (Thistle and Wonham, 1992)

Given an extended Büchi automaton A := (X ,Σ,δ ,xo,XK,XL) accepting L ⊆ Σω by

(X ,Σ,δ ,xo,XL) and E ⊆ Σω by (X ,Σ,δ ,xo,XK). Then, CA = FA. �

Further information regarding detailed proofs are given in (Thistle and Wonham,

1992). For the context of this thesis, the particular construction of a state feedback

map is of further interest, since it can be used to derive a supervisor that solves the

control problem under complete observation.

Proposition 3.1.17 (Thistle and Wonham, 1992)

Given an extended Büchi automaton A := (X ,Σ,δ ,xo,XK,XL) accepting L ⊆ Σω by

(X ,Σ,δ ,xo,XL) and E ⊆ Σω by (X ,Σ,δ ,xo,XK). Then, there exists a feedback map

φ A : CA → Γ such that for any x ∈CA

(i) for any w ∈ Σω and any path π : prew → X of w in Ax, the conditions ∀sσ ∈
prew :

σ ∈ φ A(π(s)) and Inf(w)∩XL 6= /0 together imply Inf(w)∩XK 6= /0, and

(ii) there exists v ∈ Σω and a path π : prev → X of v in Ax such that ∀sσ ∈ prev :

σ ∈ φ A(π(s)) and Inf(v)∩XL 6= /0. �

The particular state feedback map, can be used to construct an automaton, that repre-

sents a solution to the ω-language control problem under complete observation; see

also (Thistle and Wonham, 1994a) for a similar construction.

46

Chapter 3. Monolithic controller design for ω-languages

In the discrete event system library (libFAUDES, 2015), the respective algorithm has

been implemented. In particular, two different versions are available. The first one

computes the supremal ω-controllable sub-language according to the algorithm in

(Thistle and Wonham, 1994a). The algorithm is implemented as a nested program in

accordance with the definition given as a µ-Calculus. Hence, it can be split in sev-

eral sub-routines for the different operators that have been introduced before. In the

following, each sub-routine is considered by itself and described by pseudo code

for simplification reasons. Further, it is assumed that an extended Büchi automa-

ton A := (X ,Σ,δ ,xo,XK,XL) is given. For the representation of the algorithm, define

A := Candidate, X := full, XK := CandMarking, XL := PlantMarking, Σc := CAlph

and |X | := fsz.

Fix-point characterization of the controllability state set

The fix-point characterization of the controllability state set CA ⊆ X is given by the

mu-nu-iteration

CA := µX1.νX2.[Φ(X1 ∪ (X2 ∩XK))].

The µ-formula can be represented by an iteration starting with X1,0 = /0 and iterating

X1,i+1 := X1,i ∪νX2.[Φ(X1,i ∪ (X2 ∩XK))],

until X1,i+1 = X1,i. The inner ν-calculus can be computed by an iteration starting with

all candidate states X2,0 := X and iterating

X2,i+1 := X2,i ∩Φ(X1,i ∪ (X2,i ∩XK)),

until X2,i+1 = X2,i.

Define X1 := resolved and X2 := initialK. Start with resolved = /0 2 and iterate 3

resolved = resolved+νX2.[Φ(resolved∪ (X2 ∩CandMarking))],

with the inner loop starting with initialK = full and iterating

initialK = initialK∩Φ(resolved∪ (initialK∩CandMarking)).

As given in Figure 3.2, the iterations are implemented by two loops. The breaking

condition for the inner loop is either that no more states are available in initialK

2 Note that the function Clear() deletes all elements of the respective set.
3 Note that the function Insert(X) inserts all given elements in X into the respective set.

47

Section 3.1. Supervisory control of infinite string languages

or that the number of states in initialK is not changing any more.4 The breaking

condition for the outer loop is either that maximum number of states (fsz) has been

reached or that the number of states in resolved is not changing any more. At the end

of the algorithm, all states that have not been found and stored in resolved are deleted

from the Candidate state set by the funktion DelStates().

r e s o l v e d . C l e a r () ;

do \\ mu− i t e r a t i o n

r s z = r e s o l v e d . S i z e () ;

i n i t i a l K = f u l l ;

do \\ nu− i t e r a t i o n

Idx iKsz = i n i t i a l K . S i z e () ;

t a r g e t L s t a r = (i n i t i a l K ∗ CandMarking) + r e s o l v e d ;

i n i t i a l K . R e s t r i c t S e t (Phi (t a r g e t L s t a r)) ;

whi l e ((i n i t i a l K . S i z e () ! = iKsz) and (i n i t i a l K . S i z e () ! = 0))

r e s o l v e d . I n s e r t S e t (i n i t i a l K) ;

whi l e ((r e s o l v e d . S i z e () ! = r s z) and (r e s o l v e d . S i z e () ! = f s z))

C a n d i d a t e . D e l S t a t e s (f u l l − r e s o l v e d) ;

Figure 3.2: Algorithmic implementation of the characterization of the controllability state set

Reachability operator

In this part of the algorithm, the formula of the reachability operator

Φ(X1) = µX2.[Θ̃(X1 ∪X2)]

has to be evaluated. The respective iteration is given by X2,0 = /0 and

X2,i+1 = X2,i ∪ Θ̃(X1 ∪X2,i),

until X2,i+1 = X2,i. Define X1 := targetLstar and X2 := initialL. Start with

initialL = /0 and iterate initialL = initialL + thetaTilde(targetLstar +

initialL). The iteration continues until either the maximal number of states (fsz)

of the candidate is reached or the size of initialL is not increasing any more. The

implementation of the reachability operator is given in Figure 3.3.

4 Note that the function Size() determines the number of elements of the respective set.

48

Chapter 3. Monolithic controller design for ω-languages

i n i t i a l L . C l e a r () ;

do \\ mu− i t e r a t i o n

Idx i L s z = i n i t i a l L . S i z e () ;

t a r g e t L = t a r g e t L s t a r + i n i t i a l L ;

i n i t i a l L . I n s e r t S e t (t h e t a T i l d e (t a r g e t L)) ;

whi l e ((i n i t i a l L . S i z e () ! = i L s z) and (i n i t i a l L . S i z e () ! = f s z))

Figure 3.3: Algorithmic implementation of the reachability operator

Inverse dynamics operator

In this part of the algorithm, a combination of a ν- and a µ-calculus has to be evaluated.

Observe that the ν-calculus in

Θ̃(X1) := νX2.µX3.[Θ(X1 ∪ (X3\XL),X2\XL)]

can be computed by an iteration starting with all candidate states X2,0 :=X and iterating

X2,i+1 := X2,i ∩µX3.[Θ(X1 +(X3 −XL),X2,i −XL)],

until X2,i+1 = X2,i. The inner µ-calculus

µX3.[Θ(X1 +(X3 −XL),X2,i −XL)]

can be represented by the iteration starting with X3,0 = /0 and iterating

X3, j+1 := X3, j ∪Θ(X1 +(X3, j −XL),X2,i −XL),

until X3,i+1 = X3,i.

Define X1 := targetL,X2 := domainL,X3 := target1 and XL := PlantMarking. Start

with domainL:=full and iterate

domainL = domainL ∩ µX3.[Θ(targetL + (X3 − PlantMarking),domainL −
PlantMarking)],

with an inner µ-iteration, starting with target1:= /0 and iterating

target1 = target1 + theta(targetL + (target1 − PlantMarking),domainL −
PlantMarking)].

The implementation of the reachability operator is given in Figure 3.4.

49

Section 3.1. Supervisory control of infinite string languages

domainL = f u l l ;

do \\ nu− i t e r a t i o n

dLsz = domainL . S i z e () ;

domain = domainL − P l a n t M a r k i n g ;

t a r g e t 1 . C l e a r () ;

do \\ mu− i t e r a t i o n

t 1 s z = t a r g e t 1 . S i z e () ;

t a r g e t = t a r g e t L + (t a r g e t 1 − P l a n t M a r k i n g) ;

t a r g e t 1 . I n s e r S e t (t h e t a (t a r g e t , domain)) ;

whi l e ((t a r g e t 1 . S i z e () ! = t 1 s z) and (t a r g e t 1 . S i z e ()= = f s z))

domainL = R e s t r i c t S e t (t a r g e t 1) ;

whi l e ((domainL . S i z e () ! = dLsz) and (domainL . S i z e () ! = 0))

Figure 3.4: Algorithmic implementation of the inverse dynamics operator

One-Step operator

The innermost loop of the algorithm, contains the one-step operator

Θ(X1,X2) := {x ∈ X | (∃γ ∈ Γ)[(∃σ ∈ γ)[δ (x,σ)! and δ (x,σ) ∈ X1] and

(∀σ ∈ γ)[δ (x,σ)! ⇒ δ (x,σ) ∈ X1 ∪X2)]]}.

The respective implementation is given in Figure 3.5.

t h e t a . C l e a r () ;

f o r (i t e r a t i o n ove r a l l s t a t e s) {
p a s s = f a l s e ; f a i l = f a l s e ;

f o r (i t e r a t i o n ove r a l l t r a n s i t i o n s o f c u r r e n t s t a t e) {
i f (t r a n s i t i o n ends i n t a r g e t) { p a s s = t rue ; cont inue ;}
i f (t r a n s i t i o n ends i n domain) cont inue ;

i f (t r a n s i t i o n e v e n t not i n CAlph)) { f a i l = t rue ; break ;}
}
i f (p a s s && ! f a i l) t h e t a . I n s e r t (c u r r e n t s t a t e) ;

}

Figure 3.5: Algorithmic implementation of the one-step operator

It has to be iterated over all candidate states and all transitions for each state. By theta,

the state set is defined that collects all states that fulfil the condition of the one-step

50

Chapter 3. Monolithic controller design for ω-languages

operator. Further define X1 := target and X2 := domain. In order to pass the evaluation,

three conditions have to be analysed. The first condition tests if the transition ends in

the target. At least one transition per state has to end in the target. If the condition

is satisfied, the variable pass is set to true. The last two if-conditions test whether all

other transitions end in the domain and if not, whether the transition is controllable. If

both are not satisfied, the variable fail is set to true, which indicates that the state does

not satisfy the condition of the one-step operator. If the state satisfies all conditions, it

is added to theta.

The second algorithm in (libFAUDES, 2015) is similar to the first one, with the differ-

ence that it records for each analysed state x ∈ X those events Σ that have to be enabled

only finitely often in order to guarantee that the liveness properties of the given speci-

fication are satisfied. This information is later on used to construct a particular solution

of the control problem. Observe that enabling those tracked events only finitely often

also includes not enabling them at all and deleting them from the control pattern for

the respective state. Using this idea, a feedback map is constructed that maps to each

state those events that have to be disabled eventually. The respective implementation

in the one-step operator is given in Figure 3.6.

t h e t a . C l e a r () ;

f o r (i t e r a t i o n ove r a l l s t a t e s) {
p a s s = f a l s e ; f a i l = f a l s e ;

d i s a b l e . C l e a r () ;

f o r (i t e r a t i o n ove r a l l t r a n s i t i o n s o f c u r r e n t s t a t e) {
i f (t r a n s i t i o n ends i n t a r g e t) { p a s s = t rue ; cont inue ;}
i f (t r a n s i t i o n ends i n domain) cont inue ;

i f (t r a n s i t i o n e v e n t not i n CAlph)) { f a i l = t rue ; break ;}
d i s a b l e . I n s e r t (e v e n t o f c u r r e n t t r a n s i t i o n) ;

}
i f (p a s s && ! f a i l){

t h e t a . I n s e r t (c u r r e n t s t a t e) ;

i f (c u r r e n t s t a t e i s not y e t l i s t e d i n c o n t r o l s 1)

c o n t r o l s 1 [c u r r e n t s t a t e] = d i s a b l e ;

}
}

Figure 3.6: Alg. implementation of the one-step operator recording eventually disabled events

To record those events, it is defined the event set disable. An event σ is inserted in

disable if σ ∈ Σc, δ (x,σ)! and δ (x,σ) /∈ target∪ domain. When all transitions for a

state x have been analysed and the state satisfies the conditions of the one-step opera-

tor, the events in disable are listed together with the state x in the state feedback map

51

Section 3.1. Supervisory control of infinite string languages

controls1. The feedback map is only updated when the state satisfies the condition

of the one-step operator for the first time, i.e. when it it is not yet listed in controls1.

Further, the construction of the feedback map has to be aligned with the construction

of the algorithm itself and with the state sets that are found during the different iter-

ation steps. Hence, each time target1 is cleared and set to target1=/0, the feedback

map controls1 is also cleared. Further, after finishing the computation of the inverse

dynamics operator, i.e. when updating initialL by the result of the inverse dynam-

ics operator by initialL = initialL + thetaTilde(targetL), see also Figure 3.4,

controls1 is merged to a superordinate feedback map controls1L. Pseudo code of the

respective implementation is given in Figure 3.7.

f o r (i t e r a t i o n ove r a l l s t a t e s x i n c o n t r o l s 1) {
i f (c u r r e n t x i s not y e t l i s t e d i n c o n t r o l s 1 L)

c o n t r o l s 1 L [c u r r e n t x] = d i s a b l e d e v e n t s o f c u r r e n t x i n

c o n t r o l s 1 ;

}

Figure 3.7: Implementation of transferring feedback map controls1 to controls1L

The same procedure has to be done for control1L. When initialL is cleared, then

control1L has to be cleared. Further, control1L is transferred to the superordinate

feedback map control1X, when resolved is updated, i.e. resolved = resolved +

initialK, see Figure 3.2. At the end of the algorithm, control1X is used to construct

a control feedback map for all states in CA. Therefore, only those events are enabled

which are either uncontrollable, or controllable and active according to the candidate,

but not to be disabled according to control1X. Applying this control feedback map, a

particular solution can be constructed.

3.1.3.4 Algorithmic solution in the case of partial event observation

For the following considerations, the assumption of complete event observation

is dropped. To our best knowledge, this situation has only been addressed in

(Thistle and Lamouchi, 2009). Therein, an algorithm has been presented that solves

the control problem under partial observation. However, the algorithm is not applicable

to a pure Büchi automata framework and the plant is considered to have no eventuality

properties. For both reasons, it is not applicable to the framework used in this thesis

and an algorithm has to be developed that computes a solution for the particular situa-

tion that is considered here. In the following, an algorithm is proposed that is strongly

connected to the results presented just before to solve the control problem under com-

plete event observation. A similar fix-point iteration is elaborated that considers the

restrictions in the control actions due to partial event observation.

52

Chapter 3. Monolithic controller design for ω-languages

Treating algorithms for control problems with partial observation, an appropriate state

space for the computation has to be constructed; see also Cho and Marcus (1989a)

and Cho and Marcus (1989b). A fundamental role plays the ability to divide the con-

structed state space into appropriate, disjoint equivalence classes. A basic instrument

is applied, which is often used in control problems with partial event observation and

which provides an appropriate state partition, the so called state-partition automa-

ton. It is given by the synchronous composition of the original automaton with it’s

observer automaton (Cassandras and Lafortune, 2008). A more detailed description

of the state-partition automaton can also be found in (Cho and Marcus, 1989a) or

(Cho and Marcus, 1989b), where this kind of automaton is called M-recognizable5.

Further, it is defined the set of states XObs(r) := {x ∈ X | x ∈ δ (xo,s),pos = r}, which

can be reached in the automaton by strings that are equal under observation. If the

given automaton G is a state-partition automaton, then for all r1,r2 ∈ poL(G), it is

XObs(r1) ∩ XObs(r2) = /0, whenever XObs(r1) 6= XObs(r2). Hence, in that case, XObs(r)
defines equivalence classes in X . As a consequence, for every state x ∈ X , there ex-

ists an unambiguous mapping and, thus, pairwise disjunct state sets as states of the

projected automaton. For further interesting property analysis of the state-partition au-

tomaton see (Jirásková and Masopust, 2012). It is further defined for any automaton

A := (X ,Σ,δ ,xo,XL) and any state x ∈ X , the set of states that are reached by indistin-

guishable strings as

Obs(x) := {x′ ∈ X | (∃s,s′ ∈ Σ∗)[δ (xo,s) = x and δ (xo,s
′) = x′ and pos = pos′]}.

Since Obs(x) is the set of states that cannot be distinguished from x, equal control

pattern have to be enabled for all those states. This idea is included in the following

considerations for the computation of the controllability state subset under partial event

observation. Hence, the input automaton is assumed to be a state partition automaton.

The computation of the ω-admissible sub-language that is implemented in

(libFAUDES, 2015) is an extension of the computation of the ω-controllable sub-

language, described in Subsection 3.1.3.3. The implementation is still experimental

and does possibly not compute the supremal ω-admissible sub-language. It is based

on the considerations of recording events in a state feedback map, which have to be

enabled only finitely often in order to guarantee the liveness properties of the given

specification. The variant developed here records those control patterns and only ac-

cepts a new state if the corresponding pattern complies with all recorded patterns that

correspond to the same observation. Hence, the result is a subset of the ω-controllable

sub-language.

5 In (Cho and Marcus, 1989a), the observation function is represented by the mask M.

53

Section 3.1. Supervisory control of infinite string languages

The algorithmic implementation regarding the µ-/ν-iterations is similar to the one

given in Subsection 3.1.3.3 and according to the µ-calculus given therein. In addi-

tion, a procedure is implemented to record feedback maps controls1, controls1L

and controls1X, based on the ideas described in Subsection 3.1.3.3, which can be

used to construct a particular solution of the control problem. During the construc-

tion of the state partition automaton, a map is constructed that defines for each

state x in the candidate the respective state in the observer automaton. In the

algorithm, this map is called OberverStatesMap. The feedback maps controls1,

controls1L and controls1X of the algorithm for partial event observation are not

recording the feedback for each state x, but for the respective states x ObsG =

ObserverStatesMap[current state x] in the observer automaton. Further, the feed-

back map is listing not only events that shall be disabled, but also events that have to be

enabled eventually. In particular, it records for each state x the set of events from which

at least one event has to be enabled. This information is used in a next step to compare

t h e t a . C l e a r () ; c o n t r o l s T . c l e a r () ;

f o r (i t e r a t i o n ove r a l l c a n d i d a t e s t a t e s x) {
x ObsG = O b s e r v e r S t a t e sM ap [c u r r e n t s t a t e x] ;

p a s s = f a l s e ;

f a i l = f a l s e ;

d i s a b l e . C l e a r () ; e n a b l e . C l e a r () ;

f o r (i t e r a t i o n ove r a l l t r a n s i t i o n s o f c u r r e n t s t a t e x) {
i f (t r a n s i t i o n ends i n t a r g e t)

{ e n a b l e . I n s e r t (e v e n t o f c u r r e n t t r a n s i t i o n) ;

p a s s = t rue ; cont inue ;}
i f (t r a n s i t i o n ends i n domain) cont inue ;

i f (t r a n s i t i o n e v e n t not i n CAlph){ f a i l = t rue ; break ;}
d i s a b l e . I n s e r t (e v e n t o f c u r r e n t t r a n s i t i o n) ; }

i f (p a s s && ! f a i l) { / / i n i t i a l i z e w i t h e x i s t i n g p a t t e r n s

i f (x ObsG i s not y e t l i s t e d i n c o n t r o l s T) {
i f (x ObsG i s a l r e a d y l i s t e d i n c o n t r o l s 1)

c o n t r o l s T [x ObsG] . merge (c o n t r o l s 1 [x ObsG]) ;

i f (x ObsG i s a l r e a d y l i s t e d i n c o n t r o l s 1 L)

c o n t r o l s T [x ObsG] . merge (c o n t r o l s 1 L [x ObsG]) ;

i f (x ObsG i s a l r e a d y l i s t e d i n c o n t r o l s 1 X)

c o n t r o l s T [x ObsG] . merge (c o n t r o l s 1 X [x ObsG]) ; }
c o n t r o l s T [x ObsG] . d i s a b l e a l l . I n s e r t S e t (d i s a b l e) ;

c o n t r o l s T [x ObsG] . e n a b l e o n e . i n s e r t (e n a b l e) }
}

Figure 3.8: Find new candidate states and accumulate required controls

54

Chapter 3. Monolithic controller design for ω-languages

the set of enabled and disabled events for all states in Obs(x) and to find a common

control pattern. The test whether a state satisfies all necessary conditions is therefore

extended into three steps. In the first step, possible candidate states are determined and

respective control pattern are recorded in the additional feedback map controlsT, used

only in the innermost loop and cleared, every time theta is cleared, see Figure 3.8.

In a second step, the respective control pattern controlsT is tested for conflicts with

existing control pattern found for other states in Obs(x). If no conflict exists, the

control pattern is accepted and added (merge()) to controls1, see Figure 3.9.

f o r (i t e r a t i o n ove r a l l s t a t e s x l i s t e d i n c o n t r o l s T) {
i f (c o n f l i c t e x i s t s) { c o n t r o l s T . e r a s e (x) ; cont inue ;}
c o n t r o l s 1 [x] . merge (c o n t r o l p a t t e r n i n c o n t r o l s T of x) ; }

Figure 3.9: Test for conflicts in control pattern and merge new controls to controls1

In the third step, the one step-operator is evaluate by controls1. Therefore, for each

evaluated state, the disabled events according to controls1 are stored in disable

and used for the evaluation. Hence, the evaluation for each state x is simplified to

evaluating if at least one transition ends in the target and the other transitions end

either in domain ∪ target or can be disabled for all states in Obs(x) according to

controls1. If a state passes the whole evaluation, it is inserted in the state set theta,

see Figure 3.10.

f o r (i t e r a t i o n ove r a l l c a n d i d a t e s t a t e s x) {
p a s s = f a l s e ;

f a i l = f a l s e ;

x ObsG = O b s e r v e r S t a t e s Ma p [c u r r e n t s t a t e x] ;

d i s a b l e = e v e n t s s t o r e d t o be d i s a b l e d i n c o n t r o l s 1 [x Obs] ;

f o r (i t e r a t i o n ove r a l l t r a n s i t i o n s o f c u r r e n t s t a t e) {
i f (t r a n s i t i o n e v e n t i s l i s t e d i n d i s a b l e) cont inue ;

i f (t r a n s i t i o n ends i n t a r g e t) { p a s s = t rue ; cont inue ;}
i f (t r a n s i t i o n ends i n domain) { cont inue ;}
f a i l = t rue ;

}
i f (p a s s && ! f a i l) t h e t a . I n s e r t (c u r r e n t s t a t e x) ;

}

Figure 3.10: Evaluation of the one-step operator condition by means of controls1

55

Section 3.1. Supervisory control of infinite string languages

The rest of the algorithm is comparable to the steps described in Subsection 3.1.3.3.

The feedback map controls1X can be used again to compute a particular solution to the

control problem. For further details regarding the implementation, see (libFAUDES,

2015). Note that it has been given just a simplified sketch of the basic idea of the algo-

rithm that is implemented in the libFAUDES and used successfully for the computation

of solutions, e.g. for the example in Chapter 4.4.

56

Chapter 3. Monolithic controller design for ω-languages

3.2 Control problem based on input/output systems

The general idea of modelling discrete event systems by input/output systems is based

on the Behavioural Systems Theory founded by J. C. Willems. In a series of publica-

tions, i.e. (Willems, 1991), Willems introduced a novel approach to system and control

theory focusing on the set of trajectories of a dynamical system instead of modelling

phenomena with a specific set of equations. Hence, instead of concentrating on inter-

nal details how a system behaves, e.g. in form of differential equations, the focus lies

on the interaction of the system with its environment. As demonstrated in Figure 3.11,

an input/output system is given by a kind of a black-box with inputs denoted by U , as

well as outputs denoted by Y .

input/output system

UY

Figure 3.11: Input/output system

The input/output based framework inspired the development of solutions to supervi-

sory control problems of hybrid systems applying an abstraction based approach; see

(Moor and Raisch, 1999). A modular and a hierarchical extension of this framework is

given in (Moor et al., 2001) and (Moor et al., 2003), respectively. In (Perk et al., 2006)

and (Perk et al., 2008) the approach is further extended from hybrid systems to the ap-

plication in hierarchical controller design for discrete event systems. Therein, all dis-

crete events occurring in a dynamical system are divided into input and output events,

also called control and measurement events, and a strict alternation of input and output

events is required. The idea of hiding internal processes and abstracting the system

behaviour to its external interaction possibilities is used in (Perk et al., 2006) to con-

struct systematically a multi-level control architecture for topologically closed discrete

event systems. As discussed in the introduction, topologically closed behaviours are in

principal, not convenient for modelling liveness or eventuality properties, relevant for

hierarchical controller design. Hence, in order to guarantee liveness, in (Perk et al.,

2006) a particular notion of liveness was introduced, involving the output events of

each subsystem. Nevertheless, a physical phenomenon may provide inherently par-

ticular eventuality properties, as well as a specification may require a desired config-

uration to be reached eventually. These natural liveness properties can be expressed

easily by ω-languages, given that the limitation to topologically closed languages is

dropped. According to (Moor et al., 2011), this is indeed possible in the abstraction

57

Section 3.2. Control problem based on input/output systems

based context of input/output systems. In particular, the given system is required to

satisfy an additional specific controllability condition in order to guarantee liveness in

the closed-loop configuration of a controller that was synthesised on the basis of ab-

stractions. This result is used in this thesis to set up a hierarchical, abstraction based,

and modular control approach for ω-languages. Note that basic ideas of this approach

have been published in (Baier and Moor, 2012) and (Baier and Moor, 2015).

The section is structured as follows. In Section 3.2.1 properties of the IO-control-

problem are introduced. In Subsection 3.2.2 properties of the IO-plant are presented.

Subsection 3.2.3 introduces the structure of IO-specifications. A solution to the IO-

control-problem is developed in Subsection 3.2.3 and the resulting closed-loop prop-

erties are analysed in Subsection 3.2.5. The partitioning of the events into input and

output events might seem to complicate the modelling process. However, for the re-

sults on abstraction-based controller design in Chapter 4, the input/output structure is

a crucial prerequisite, as also demonstrated in (Perk et al., 2006) or (Baier and Moor,

2015). Hence, throughout this section the modelling process is demonstrated in the

context of a transportation system. Simple examples illustrate how to receive models

for the IO-plant and the IO-specification with input/output event alternation from a

given ad hoc model.

3.2.1 Properties of the IO-control-problem

The main idea behind the monolithic control problem for input/output systems is

demonstrated in Figure 3.12 a) and b).

a)

IO-plant L

UpYp

YeUe

IO-controller H

UcYc

b)

IO-plant L

UpYp

YeUe

IO-controller H

UcYc

IO
-c

lo
se

d
-l

o
o

p
K

IO
-s

p
ec

ifi
ca

ti
o

n
E

Figure 3.12: a) Interaction of IO-plant and IO-controller b) IO-control-problem

58

Chapter 3. Monolithic controller design for ω-languages

In comparison to the closed-loop configuration introduced in Chapter 3, the discrete

event system is referred to as IO-plant and the supervisor is denoted as IO-controller.

Further, IO-plant and IO-controller interact with each other, with an IO-environment

and with high-level coordinators via input events U and output events Y . The in-

teraction of IO-plant and IO-controller is called the IO-closed-loop. The mentioned

IO-environment models physical dependencies to other IO-plants, whereas high-level

coordinator integrate the IO-closed-loop into a hierarchical control architecture. Fur-

ther details regarding the closed-loop system in a hierarchical and modular control

context are presented in Chapter 4. The IO-specification is also given by input and

output events, but focusing on the interaction of the closed-loop system with the IO-

environment and a high-level IO-controller.

The solution to the control problem under consideration is a controller that synchro-

nizes alternating symbols from the internal plant alphabet Σp :=Up ∪̇Yp with the plant,

forming a closed-loop configuration. The controller interacts with a high-level opera-

tor, while the plant provides the interaction with the low-level environment. It is taken

the perspective that the operator seeks to affect the environment according to high-level

commands from Uc. The controller is meant to implement each high-level command

on the plant by applying suitable events from Up, while monitoring the plant responses

ranging in Yp. Eventually, the controller shall provide a high-level feedback event from

Yc to the operator, in order to receive the subsequent high-level command. Thus, a spec-

ification referring to the overall alphabet is meant to relate high-level control events

Σc := Uc ∪̇Yc with low-level plant events Σe := Ue ∪̇Ye, and, thereby, formally de-

fine the consequences of high-level commands; see also Figure 3.12 b). Summing up,

the control problem under consideration consists of an IO-plant, an IO-Specification

and three ports for system interconnection. The purpose of the control problem is the

design of an IO-controller H ⊆ Σω
cp such that the closed-loop behaviour satisfies the

IO-specification. The relevant parameters are summarized as a control problem.

Definition 3.2.1 IO-control-problem

An IO-control-problem consists of the following components

Σ := Σp ∪̇Σe ∪̇Σc, the overall alphabet,

Σc :=Uc ∪̇Yc, the high-level control events,

Σp :=Up ∪̇Yp, the internal plant events,

Σe :=Ue ∪̇Ye, the low-level plant events,

L⊆ (Σp ∪̇Σe)
ω , the IO-plant behaviour, and

E ⊆ Σω , the IO-specification.

59

Section 3.2. Control problem based on input/output systems

Throughout this thesis, the IO-control-problem is referred by (Σ,L,E). Further, it is

Σpe := Σp ∪̇Σe, the plant alphabet,

Σcp := Σc ∪̇Σp, the controller alphabet,

Σce := Σc ∪̇Σe, the external alphabet,

Σuc :=Uc ∪̇Yp ∪̇Σe, the uncontrollable events, and

Σo := Σc ∪̇Σp, the observable events. �

Projections from strings or infinite strings over Σ, to any of the above subsets of Σ, are

denoted p− and pω
−, respectively, with a subscript to indicate the respective range; e.g.,

ppe for the projection from Σ∗ to Σ∗
pe.

3.2.2 Properties of the IO-plant

The IO-plant given in Figure 3.13 is considered to be part of a large-scale system

consisting of several plants and several controllers.

IO-plant L

UpYp

YeUe Low-level plant events Σe

Internal plant events Σp

Figure 3.13: IO-plant

Thus, it provides two different types of event interfaces for possible interaction. The

first interface is given by the internal plant alphabet, denoted by Σp := Up ∪̇Yp, the

second one by the low-level plant alphabet Σe :=Ue ∪̇Ye. By Σpe := Σp ∪̇Σe the respec-

tive plant alphabet is denoted. The plant behaviour L ⊆ Σω
pe is required to exhibit an

strictly alternating input and output event structure.

Further, the plant has to accept any input event from the controller and from the envi-

ronment, when expecting an input event from the respective part. To characterize this

specific acceptance condition of input events, it is referred to the notion of a locally

free input; see also (Perk et al., 2006).

60

Chapter 3. Monolithic controller design for ω-languages

Definition 3.2.2 Locally free input

For a language L ⊆ Σ∗, the alphabet U ⊆ Σ is a locally free input, if

(∀s ∈ Σ∗,µ,µ ′ ∈U) [sµ ∈ preL ⇒ sµ ′ ∈ preL]. �

It is not restrictive, but rather cosmetic, to require locally free inputs. Ad hoc models

often lack these structural property since some inputs are considered to be useless in

some system states. Nevertheless, considering e.g. programmable logic controller, note

that at any moment it is possible to enable or disable actuator events. Hence, requesting

locally free inputs just requires the model to contain more details of the natural plant

behaviour. Locally free inputs can be realised by adding some error states to which

these inputs lead. These error states can not be left again by any of the future traces,

and, therefore signalise useless input events. Observe that an admissible controller will

not activate one of these useless inputs. The plant behaviour L is required to possess

the alternating input/output structure, as well as locally free inputs in order to refer to

it as an IO-plant.

Definition 3.2.3 IO-plant

Given an alphabet Σpe = Σp ∪̇Σe, the discrete event system L⊆ Σω
pe is an IO-plant, if

P1 L⊆ ((YpUp)
∗(YeUe)

∗)ω ⊆ Σω
pe.

P2 preL possesses locally free inputs Up and Ue. �

In the following, the IO-plant is always requested to satisfy these conditions. A trivial

example further illustrates structural properties of the IO-plant.

Example 3.2.1 IO-plant

The example system is a conveyor belt, as in Figure 1.3, that forms part of a laboratory

model of a flexible manufacturing system. It consists of a simple conveyor belt to trans-

port work pieces and a sensor in the middle of the belt to detect work pieces. Actuator

events are provided to turn the belt motor on and off, denoted by bm+ and boff. The sen-

sor events wpar and wplv indicate the arrival of a work piece at the conveyor belt sensor

or its leaving of the sensor, respectively. Actuator and sensor events are motivated by

edges on the digital signals used to physically control the conveyor belt component by

a programmable logic controller. For possible interaction with components placed next

to the conveyor belt, the events enter and exit are defined, describing the entering of

a work piece from the left or the exiting process to the right. Note that these events

do not correspond to digital signals and are therefore not observable by the controller

due to the lack of a respective sensor to detect these events. Further, the event receipt

61

Section 3.2. Control problem based on input/output systems

models possible feedback from the next component to inform about the reception of a

work piece. In Figure 3.14 an ad hoc model is given for the physical plant behaviour,

considering only one belt direction to keep it simple. Note that in the case that one ac-

tuator event is enabled in a state, all actuator events are enabled in that state, modelling

the actual situation that a controller may enable each actuator event. In comparison

to the physical conveyor belt model in (Baier and Moor, 2015), the plant behaviour is

already reduced to model only feasible actuator input, i.e. actuator events before enter

and exit are excluded, to keep the example simple. In contrast, the possibility of an-

other work piece to enter right after the last work piece has exited the conveyor belt, is

included in this model.

Figure 3.14: Physical ad hoc model of the conveyor belt

The physical model can be transformed to an IO-plant by replacing the occurrence of

individual events by pairs of input and output events; see Figure 3.15. In Table 3.1,

all events are summarized and categorized into respective alphabets. For this purpose,

the additional output event idle is introduced to formally provide feedback when no

sensor event occurred. The events enter and exit are replaced by pairs of request

and acknowledgement. Here, enter is modelled by get to indicate the attempt to get

a work piece from the left, which may succeed or fail, indicated by a subsequent pos-

itive acknowledge pack or negative acknowledge nack, respectively. Likewise, exit is

modelled by put, followed by pack or nack. Provided that the belt motor is on, the

62

Chapter 3. Monolithic controller design for ω-languages

Figure 3.15: Conveyor belt, IO-plant model

Ye: get, put attempt to get/put a workpiece from/to the environment

Ue: pack, nack acknowledgement of recent get/put

Yp: idle,wpar,wplv plant sensors with dummy idle if nothing else is to report

receipt

Up: bm+,boff plant actuator to operate belt motor

Table 3.1: List of events of the conveyor belt IO-plant model

eventual occurrence of sensor events is modelled. It can be observed, that the conveyor

belt model is not a topologically closed behaviour and, thus, contains eventuality prop-

erties it can be taken advantage of during a controller synthesis procedure. Regarding

the IO-plant properties, observe that the event ordering, IO-plant property P1, can be

proven easily by a language inclusion test. Locally free inputs, IO-plant property P2,

is verified on a per state basis. �

63

Section 3.2. Control problem based on input/output systems

3.2.3 Properties of the IO-specification

To characterise the desired plant behaviour, a language inclusion specification E ⊆ Σω

is provided. The overall alphabet Σ := Σp ∪̇Σe ∪̇Σc consists of the internal plant al-

phabet, the low-level plant alphabet and the high-level control alphabet Σc :=Uc ∪̇Yc

that provides events for the interaction of the required controller with high-level com-

ponents, i.e. superordinate controller in a hierarchical control framework. Considering

pure monolithic controller design, it would be possible to just request a specification

based on the alternation of input and output events. However, in order to design a

suitable configuration for a hierarchical control architecture, the resulting closed-loop

system has to satisfy particular properties. First of all, the resulting closed-loop sys-

tem shall be used as IO-plant for the next higher controller design. Thus, the external

closed-loop behaviour is required to possess again the plant properties P1 and P2. In

particular, the external closed-loop must accept any external input events from Uc and

Ue. Further, in order to guarantee liveness, it must persistently provide high-level feed-

back Yc and shall relate external to internal signals. These considerations are already

included in the structural properties of the IO-specification.

Definition 3.2.4 IO-specification

Given an alphabet Σ = Σp ∪̇Σe ∪̇Σc, the discrete event system specification E ⊆ Σω is

an IO-specification, if

E1 E ⊆ (((YpUp)
∗ (YeUe)

∗)∗ (Yp(YcUc)
+Up))

ω .

E2 preE possesses locally free inputs Uc and Ue. �

Note that property E1 guarantees as well the alternating input/output structure, as the

persistent feedback to the high-level, since events from Σc have to appear always even-

tually. Further note that in the intended usage, only events from Σe and Σc are necessary

to specify the required behaviour and it is left to the controller design to add by syn-

thesis respective control and measurement actions from the internal plant alphabet.

The modelling process of an adequate specification is further illustrated by an example

specification for the conveyor belt.

Example 3.2.2 IO-specification

In order to state a control objective, the operator output events full and empty are in-

troduced to indicate whether or not a work piece is known to be available. Further, the

operator input events wpr and wpd are used for the request and delivery of a work piece,

respectively. The intended semantics of the newly introduced events is defined by re-

lating them to the environment events via a specification automaton; see Figure 3.16.

In Table 3.2, all events are summarized and categorized into respective alphabets.

64

Chapter 3. Monolithic controller design for ω-languages

Figure 3.16: IO-specification for a conveyor belt

Ye: get, put attempt to get/put a workpiece from/to the environment

Ue: pack, nack acknowledgement of recent get/put

Yc: full,empty high-level measurement events

Uc: wpd,wpr,wait high-level actuator events

Table 3.2: List of events of the IO-specification of the conveyor belt

Note that the specification automaton exclusively refers to the alphabet Σce and that it

is left to the synthesis procedure to figure out how to drive the plant by interleaving

events from Σp. Technically, the depicted automaton realises the projection pω
ceE of the

formal specification E . In particular, there is no need to compute pω
ceE from E , avoid-

ing a potentially exponential growth in the state count. The event ordering required

by condition E1 is again verified by a language inclusion specification. The liveness

requirement to eventually provide feedback to the operator is confirmed by inspecting

all strictly connected components without an Yc event and by verifying them not to

65

Section 3.2. Control problem based on input/output systems

include a marked state. Regarding locally free inputs E2, error states have been intro-

duced to obtain a locally free Uc. A more specific error behaviour would have been

possible. However, for the purpose of a subsequent design stage in a hierarchical con-

trol system, the proposed error behaviour will render the error states unreachable for

any sensible high-level specification. Observe further, that the given specification is

not topologically closed. �

3.2.4 Solution to the control problem

Given a control problem (Σ, L, E) with an IO-plant L and an IO-specification E as

introduced before, an adequate controller H ⊆ Σω
cp shall be synthesised. For the sub-

sequent discussion, it turns out convenient to raise L ⊆ Σω
pe to the overall alphabet Σ

by applying the inverse projection to the overall alphabet. To avoid the creation of ar-

tificial liveness properties thereby and in order to further guarantee the intended event

order, a particular construction is applied that already includes the event ordering of

the specification.

Definition 3.2.5 Full IO-plant behaviour

Given an IO-plant L⊆ Σω
pe. The full IO-plant behaviour is given by

LΣ := (p−ω
pe (L ∪ preL))∩ (clo((Yp(YcUc)

∗Up)
∗ (YeUe)

∗)ω) �

Since L is an IO-plant, LΣ possesses locally free inputs Uc, Up ∪̇Yc and Ue by construc-

tion. Analysing the given control problem, observe that a control problem for sequen-

tial behaviours with not necessarily relatively closed specifications is given. Further, in

comparison to the control problem in Section 3.1, for a given IO-control-problem, the

controller is given in form of a language H instead of the description as a supervisor

map f . Note that both representations can be converted into each other, compare e.g.

(Cassandras and Lafortune, 2008). In equivalence to the full IO-plant behaviour, the

controller behaviour w.r.t. the overall alphabet is denoted by HΣ := p−ω
cp H ⊆ Σω . An

admissible solution to the IO-control-problem (Σ, L, E) can now be characterised.

Definition 3.2.6 Solution to the IO-control-problem

Given an IO-control-problem (Σ, L, E), consider a candidate controller H ⊆ Σω
cp. H is

a solution to the control problem, if

H1 H enforces the specification E , i.e., LΣ ∩HΣ ⊆ E .

H2 HΣ is ω-admissible w.r.t. (Σuc, Σo, LΣ). �

66

Chapter 3. Monolithic controller design for ω-languages

If H is a solution, H1 and E1 imply that the IO-closed-loop behaviour is

K := L ‖H := (p−ω
pe L) ∩ (p−ω

cp H) = LΣ ∩HΣ.

The last equality follows from the particular event ordering in LΣ and E . Observe that

LΣ∩HΣ ⊆ E ⊆ (((YpUp)
∗ (YeUe)

∗)∗(Yp(YcUc)
+Up))

ω . Thus, it is (p−ω
pe preL)∩LΣ∩HΣ =

/0. H2 implies that LΣ and HΣ are non-conflicting; see Lemma A.1 in the appendix.

Hence, (prep−ω
pe L) ∩ (prep−ω

cp H) = pre((p−ω
pe L) ∩ (p−ω

cp H)). Thereby, plant L and con-

troller H form a non-conflicting closed-loop system.

3.2.5 Properties of the closed-loop behaviour

The characterisation of solutions for the IO-control problem implies particular proper-

ties of the closed-loop system. One of these properties, the ω-normality, is introduced

in the following Definition.

Definition 3.2.7 ω-normality

Given L, K ⊆ Σω , and a set of observable events Σo ⊆ Σ, K is said to be ω-normal

w.r.t. (Σo, L), if

K = (p−ω
o pω

oK)∩L. �

Note that ω-normality shows certain similarities with prefix-normality. As in the case

of ∗-languages, ω-normality is retained under arbitrary union. Moreover, provided that

K is relatively closed w.r.t. L, prefix-normality of preK w.r.t. (Σo, preL) implies nor-

mality of K w.r.t. (Σo,L).

Lemma 3.2.1 (Baier and Moor, 2012)

Let K be relatively closed w.r.t. L ⊆ Σω and Σo ⊆ Σ, then K is ω-normal w.r.t. (Σo,L)
if preK is normal w.r.t. (Σo, preL).

Proof. K = (cloK) ∩ L = (limpreK) ∩ L = (lim((p−1
o po preK) ∩ (preL))) ∩ L =

(limprep−ω
o pω

oK) ∩ (limpreL) ∩ L = (clop−ω
o pω

oK) ∩ L ⊇ (p−ω
o pω

oK) ∩ L ⊇ K.

Equality implies that K is ω-normal. �

It is now possible to analyse the properties of the closed-loop system that result from

the interaction of the IO-plant and the IO-controller.

Proposition 3.2.2 (Baier and Moor, 2015)

If H is a solution to the control problem (Σ, L, E), where L is an IO-plant, then the

IO-closed-loop behaviour K = LΣ ∩HΣ satisfies K1–K5:

67

Section 3.2. Control problem based on input/output systems

K1 K enforces the specification E , i.e., K ⊆ E ,

K2 K is ω-admissible w.r.t. (Σuc, Σo, LΣ),

K3 K is ω-normal w.r.t. (Σo, LΣ),

K4 preK is normal w.r.t. (Σo,preLΣ),

K5 preK possesses locally free inputs Uc and Ue.

Proof. K1 and K2 are immediate consequences of H1 and H2. For K3 observe that

K ⊆(p−ω
cp pω

cpK)∩LΣ = (p−ω
cp pω

cp(HΣ ∩LΣ))∩LΣ ⊆

(p−ω
cp pω

cpp−ω
cp H)∩ (p−ω

cp pω
cpLΣ)∩LΣ =HΣ ∩LΣ = K.

K4 is obtained by

preK ⊆ (p−1
cp pcp preK)∩ (preLΣ) =

(p−1
cp pcp pre(HΣ ∩LΣ))∩ (preLΣ)⊆

(p−1
cp pcp preHΣ)∩ (p−1

cppcp preLΣ)∩ (preLΣ) =

(preHΣ)∩ (preLΣ) = pre(HΣ ∩LΣ) = preK.

For the penultimate equality, recall that H2 implies that LΣ and HΣ are non-conflicting.

Regarding K5, pick s, r ∈ preK, µ, µ ′ ∈ Ue, and ν, ν ′ ∈ Uc, such that sµ ∈ preK

and rν ∈ preK. Observe that sµ, rν ∈ preK ⊆ preLΣ. According to P2 it follows that

sµ ′ ∈ preLΣ. Furthermore, the locally free input Uc of preLΣ implies that sν ′ ∈ preLΣ.

From ω-admissibility of HΣ w.r.t. (Σuc, LΣ) and s, r ∈ preHΣ follows that sµ ′, rν ′ ∈
preHΣ. Recall again that LΣ and HΣ are non-conflicting, to obtain sµ ′, rν ′ ∈ (preLΣ)∩
(preHΣ) = preK. �

Vice versa, any ω-language that satisfies properties K1–K3 can be shown to be a solu-

tion to the control problem.

Proposition 3.2.3 (Baier and Moor, 2015)

Given a control problem (Σ, L, E), consider a closed-loop candidate K ⊆ LΣ. If K sat-

isfies K1–K3, then the controller H= pω
cpK solves the control problem (Σ, L, E).

Proof. Note that K2, by Lemma A.2 from the Appendix, implies that (preLΣ)∩(preK)
is prefix-normal w.r.t. (Σo,preLΣ), and, together with K⊆ LΣ, K4 is obtained. Accord-

ing to K1 and K3, it is LΣ ∩HΣ = LΣ ∩ (p−ω
cp pω

cpK) = K ⊆ E , hence, H satisfies H1. To

establish H2, pick an arbitrary s∈ (preLΣ)∩(prep−ω
cp pω

cpK). Here, K4 implies s∈ preK.

According to K2, it is possible to choose Vs ⊆ LΣ ∩K ⊆ LΣ ∩HΣ such that s ∈ preVs,

preVs is controllable w.r.t. (Σuc, preLΣ), prefix-normal w.r.t. (Σo,preLΣ), and relatively

closed w.r.t. LΣ. Hence, HΣ is ω-admissible and satisfies H2. �

68

Chapter 3. Monolithic controller design for ω-languages

Hence, in order to design an adequate controller, a closed-loop system has to be syn-

thesised that satisfies K1–K3. The algorithms presented in Subsection 3.1.3 can be

applied to find a candidate. Further, an appropriate IO-controller that solves the con-

trol problem can be deduced directly by projection of the closed-loop system to the

alphabet Σcp. For the sake of completeness, the solution process is demonstrated by

solving the control problem of the conveyor belt example.

Example 3.2.3 Solution to the conveyor belt IO-control-problem

The IO-plant model of the conveyor belt in Figure 3.15 together with the IO-

specification in Figure 3.16 are considered. To solve the given IO-control-problem,

the algorithm for partially observed ω-languages in Subsection 3.1.3 is applied and

a closed-loop candidate K is synthesised that satisfies K1–K3 and is relatively closed

w.r.t. the plant behaviour. This implies that the respective controller H is closed and

can be deduced directly by the projection of cloK to Σc. The result is a controller with

36 states.

Figure 3.17: IO-controller of the conveyor-belt

In Figure 3.17 a sub-language of this controller is shown. Note that for the sake of

clarity, high-level control inputs that lead to the error behaviour of the specification are

just represented by a symbolical state, which is named Error. �

69

Section 3.3. Conclusion - Monolithic controller design for ω-languages

3.3 Conclusion - Monolithic controller design for

ω-languages

In this Chapter, the general control problem for ω-languages has been introduced on

the basis of the control problems for ∗-languages described in the Preliminaries. For

the case of relatively closed specifications, the control problem for ω-languages can be

transferred easily to an equivalent control problem for ∗-languages. Using known al-

gorithms for ∗-languages, the computation of solutions is straight forward. In the case

of more general specifications, a similar transfer to a ∗-language problem is not pos-

sible. In particular, an alternative characterisation for the set of possible closed-loop

behaviours has to be defined, since the closed-loop property of relative closure w.r.t.

the plant eventuality properties is not preserved under arbitrary unions. This alterna-

tive characterisation was first introduced in (Moor et al., 2011) and describes the set

of finite strings that can be controlled to satisfy the given specification on the infinite-

time horizon. This characterisation can be extended to solve the control problem under

partial observation. To support the practical computation of solutions, several algo-

rithmic implementations have been described. In particular a solution algorithm for

the control problem under complete observation is described which was introduced in

(Thistle and Wonham, 1992). It is given in form of a µ-Calculus, a Temporal Logic

that is often used to describe complex properties of automata and which is based on

a property characterisation using greatest and least fix-points. Further, it has been de-

scribed how this computation can be extended to compute solutions for the control

problem under partial observation.

In the second part of this chapter, the control problem for sequential behaviours has

been adapted to an input/output system description, according to the Behavioural Sys-

tem Theory introduced in (Willems, 1991). In order to prepare an appropriate frame-

work for the design of hierarchical and modular control architectures, a basic control

problem for input/output systems is defined. Therefore, plant and specification of the

given control problem are required to satisfy some fundamental structural properties.

The solution of the control problem results into a closed-loop configuration with ex-

ternal signals satisfying again the particular properties, which have been required from

the underlying plant. This fact opens the possibility to reuse the closed-loop system

as a plant and to build up a hierarchical and modular control architecture. Thus, the

presented procedure enables for the first time the design of hierarchical, abstraction-

based, and modular control architectures for ω-languages, without the limitation to

topologically closed languages.

70

4 Hierarchical and modular

controller design for ω-languages

From a practical perspective it is not sufficient to offer a procedure that just solves

the given discrete event control problem, without considering applicability of the pro-

cedure and the computational effort. In applications of the field of transport or man-

ufacturing systems, the number of components running synchronously often grows

significantly. Thus, a monolithic supervisor often has to interact simultaneously with a

large number of system components; see Figure 4.1.

System L1 System L2 System L3 System L4

Supervisor f

Γs ∈ Σ∗

Monolithic plant model L = L1 ‖ ... ‖ L4 ⊆ Σ∗

Monolithic specification model E = E1 ‖ ... ‖ E4 ⊆ Σ∗

Specification E1 Specification E2 Specification E3 Specification E4

Figure 4.1: Monolithic design for large-scale systems

71

Chapter 4. Hierarchical and modular controller design for ω-languages

To synthesise a respective supervisor, the behaviour of the whole system, the mono-

lithic system model, has to be determined. Hence, it is necessary to compute the syn-

chronous composition (see Subsection 2.2.3) of all separate plant models. On the other

hand, a large-scale system often requires a large number of specifications, which have

to be composed to a single model as well. Using the composed system model and the

composed specification model, a single controller for all components has to be synthe-

sised; see Figure 4.1. The number of system states grows exponentially in the number

of components and specifications. Therefore, the time required to solve the control

problem can increase exponentially. In (Gohari and Wonham, 2000) a detailed com-

plexity analysis is provided. As a consequence, the computational effort often results

to be unreasonable for practical applications. This is the motivation for various ap-

proaches to offer a work around to the known problem of the combinatorial explosion

of large scale systems.

A widely-used approach to handle the computational effort of supervisor design for

large-scale systems, is the modular controller design. The basic idea behind is the di-

vision of the control task into several sub-tasks, and, the use of several sub-controllers;

see for example (Wonham and Ramadge, 1988). Another very common approach,

which can be combined with the first one, is the abstraction-based design. Instead of

employing the actual monolithic plant model, a simplified model is systematically ex-

tracted and used for the synthesis procedure. The challenge in using this method, is to

be able to guarantee the required closed-loop properties and to generate an admissible

solution by using only the abstracted model.

In this Chapter, a procedure is presented to design an abstraction-based hierarchical

and modular control architecture, for a control problem given by ω-languages. In Sec-

tion 4.1, a short introduction into the idea behind modular and abstraction-based con-

troller design is given and some existing approaches for ∗-languages are analysed. In

Section 4.2, a procedure is introduced to design abstraction-based IO-controller for

the input/output-based framework described in the previous Chapter. In Section 4.3,

a modular control design procedure for input/output-systems is given. Finally, in Sec-

tion 4.4, the efficiency of hierarchical and modular controller design for input/output-

systems is demonstrated by means of a transport systems example.

72

Chapter 4. Hierarchical and modular controller design for ω-languages

4.1 Hierarchical and modular controller design for

∗-languages

Given a large scale system and given the fact that the number of states growth ex-

ponentially by the number of components involved, the monolithic controller design

reaches easily its limits. As a consequence, several approaches have been developed

for the control problem involving ∗-languages in order to avoid the computation of the

monolithic plant and/or specification model. In the following, the focus lies on those

approaches developed for ∗-languages, that show certain similarities to the hierarchical

and modular control architecture that is developed in this thesis for ω-languages.

4.1.1 Modular controller design

The first idea to avoid the computation of large monolithic models was the application

of modular control. In (Ramadge and Wonham, 1987b) and (Wonham and Ramadge,

1988) a procedure has been presented that, instead of synthesising a monolithic con-

troller, uses several decentralized sub-controllers, splitting the control task into several

sub-tasks in accordance with the separate specifications; see Figure 4.2.

System L1 System L2 System L3 System L4

Γ3Σ∗

Supervisor f1 Supervisor f2 Supervisor f3 Supervisor f4

Γ4Σ∗Γ2Σ∗Γ1Σ∗

Monolithic plant model L = L1 ‖ ... ‖ L4 ⊆ Σ∗

Figure 4.2: Modular controller design

This procedure often reduces computational effort, in particular in the case of

prefix-closed languages. Otherwise a test whether the involved supervisors are non-

conflicting has to be performed that requires the construction of the composition of the

given specifications.

73

Section 4.1. Hierarchical and modular controller design for ∗-languages

Some years later, an alternative procedure has been presented in (de Queiroz and Cury,

2000a) and (de Queiroz and Cury, 2000b) that exploits the fact that large scale systems

in general consist of several sub-systems and their specifications often refer only to

some of these subsystems. As a consequence, the control problem is divided into local

control problems involving only parts of the whole system. By that, the construction

of the monolithic system model can be avoided and the computational effort can be

reduced; see also Figure 4.3.

System L1 System L2 System L3 System L4

Supervisor f12 Supervisor f34

Γ34Σ∗
34Γ12Σ∗

12

L1 ‖ L2 ⊆ Σ∗
12 L3 ‖ L4 ⊆ Σ∗

34

Figure 4.3: Modular controller design

Further, the property of non-conflicting has to be tested only locally on the basis of the

involved subsystems. In many cases, this procedure reduces the computational effort,

since the number of states of the sub-components is smaller.

4.1.2 Hierarchical abstraction-based controller design

Another procedure to handle the problem of the growing computational effort for

large-scale systems is the use of a hierarchical control architecture combined with

abstraction-based controller design. In contrast to the horizontal organisation of the

modular control design presented before, the hierarchical design focuses on exploiting

vertical modularities in the given system. The hierarchical structure can either be build

in a top-down or in a bottom-up design. The top-down design proposes to start with the

control on the highest level and to incorporate or deduce step-by-step control details

for the subordinate levels; see e.g. (Ma and Wonham, 2006). More common in the area

of supervisory control of ∗-languages is the bottom-up design; see e.g. (Schmidt et al.,

2008; Perk et al., 2008; Feng and Wonham, 2008; da Cunha et al., 2002; Leduc et al.,

2005). It proposes to start with the detailed physical plant model and to build step-by-

step a hierarchy of superordinate controllers. Thereby, the degree of details shall be

74

Chapter 4. Hierarchical and modular controller design for ω-languages

reduced from one level to the next, in order to reduce the computational effort. Like

demonstrated in Figure 4.4, the basic idea is to use abstractions Lhi of the original plant

L for the design of a high-level controller f hi that can be realised by a low-level con-

troller f and to keep the grade of details as small as necessary for the design of the

superordinate controller.

System L

ΓΣ∗

Supervisor f

Abstraction Lhi

ΓhiΣ∗
hi

Supervisor f hi

⇒

⇐

Figure 4.4: Abstraction-based controller design

A first analysis of requirements regarding the relation between high-level and

low-level control problem, can be found in (Zhong and Wonham, 1990). Therein, the

concept of hierarchical consistency is introduced within a two-level framework. a

controller is designed based on the abstract high-level model. Hence, the concept of

hierarchical consistency ensures the existence of a controller that is able to realize the

control task synthesised on the high-level in a closed-loop system on the low-level. In

(Wong and Wonham, 1996) this concept was extended in order to cope not only with

the challenge of control consistency, but also with the problem of non-blocking in the

hierarchical framework. Depending on the design of the high-level model, a controller

designed for the high-level control task may be blocking with respect to the low-level

plant. Hence, the notion of an observer is introduced as a sufficient condition for

non-blocking hierarchical controller design. In the sequel, several variations of the

observer property have been analysed on the basis of natural projections, like e.g. the

natural observer (Schmidt et al., 2008; Feng and Wonham, 2006, 2008), or the less

restrictive consistency for the purpose of controller design; see (Moor et al., 2013;

Moor, 2014). In general, the natural projection does not guarantee a reduction of the

state space. In particular, like discussed in (Wong, 1998), growth of the state-space

is possible. In that case, the abstraction results into a control problem of even higher

computational effort. The only known abstraction that guarantees that the state space

is not growing is the abstraction using the natural observer; see (Wong, 1998). Another

interesting topic in the abstraction-based design is the question, whether the high-level

supervisor guarantees maximally permissiveness on the low-level. By the conditions

output control consistency (Zhong and Wonham, 1990), or the less restrictive local

75

Section 4.1. Hierarchical and modular controller design for ∗-languages

control consistency (Schmidt and Breindl, 2011), maximally permissive control

can be guaranteed. Algorithms to compute appropriate abstractions that guarantee

non-blocking and/or maximal permissiveness are given e.g. in (Feng and Wonham,

2010) and (Schmidt and Breindl, 2011).

4.1.3 Hierarchical abstraction-based and modular controller

design

The combination of modular controller design with abstraction-based controller design

is an intuitive consequence. Figure 4.5 demonstrates just one of several possibilities to

combine both approaches.

System L1 System L2 System L3 System L4

Supervisor f12 Supervisor f34

Γ34Σ∗
34Γ12Σ∗

12

L1 ‖ L2 ⊆ Σ∗
12 L3 ‖ L4 ⊆ Σ∗

34

Γ1234Σ∗
1234

Supervisor f1234

Γ1234Σ∗
1234

Supervisor f hi
1234

Abstraction Lhi⇒

⇐

Figure 4.5: Abstraction-based and modular controller design

First, the modular supervisor f12 and f34 are designed on the low-level. Subsequently

an abstraction Lhi of the synchronous product of the closed-loop behaviour of the mod-

ular closed-loops is computed. Depending on the abstraction, it is also possible to first

compute the abstraction of each modular closed-loop and then build the synchronous

product of the abstracted closed-loops, reducing thereby the computational effort. In

particular, the natural observer is an effective and consistent abstraction that might be

applied here; see (Schmidt et al., 2008; Feng and Wonham, 2008). The resulting ab-

stracted plant model is used for the design of a high-level supervisor f hi
1234 that can be

transferred easily to a supervisor f1234 that coordinates the modular supervisor on the

low-level.

76

Chapter 4. Hierarchical and modular controller design for ω-languages

It would also be possible to derive low-level realizations for each sub-system; see

(Schmidt et al., 2008). Moreover, abstractions can be used just to reduce the complex-

ity of the test for non-blocking of modular supervisor; see (Pena et al., 2006). Com-

putational efficiency of the combination of abstraction-based and modular controller

design has been shown in a laboratory set-up of a three-story elevator; see (Kaess,

2014).

4.2 Abstraction-based control problem for input/output

systems

Coming back to the control problem for sequential behaviours, the basic idea of

abstraction-based hierarchical control shall be transferred to the presented framework

of input/output systems; see also (Baier and Moor, 2015). As illustrated in Figure 4.6

to the left, it is given an IO-control problem (Σ, L, E) together with its solution H and

its IO-closed-loop behaviour K = LΣ ∩HΣ.

IO
-s

p
ec

ifi
ca

ti
o

n
E

h
i

IO
-c

lo
se

d
-l

o
o

p
K

h
i

IO-plant L

UpYp

YeUe

IO-controller H

UcYc

IO
-c

lo
se

d
-l

o
o

p
K

IO
-s

p
ec

ifi
ca

ti
o

n
E

IO-controller Hhi

Uhi
cY hi

c

IO-specification E

UcYc

IO-controller Hhi

Uhi
cY hi

c

YeUe

⇒

⇐

IO
-s

p
ec

ifi
ca

ti
o

n
E

h
i

IO
-c

lo
se

d
-l

o
o

p
K̂

h
i

Figure 4.6: Abstraction-based hierarchical controller design

For a superordinate control level, the external closed-loop behaviour Lhi := pω
ceK shall

be used as IO-plant on the next higher control level. Thus, given a high-level speci-

fication Ehi, a high-level control problem (Σhi, Lhi, Ehi) is received for the design of

the superordinate controller Hhi and, thereby, a hierarchical control architecture can be

77

Section 4.2. Abstraction-based control problem for input/output systems

obtained. However, in order to reduce computational effort, the ideas of the abstraction-

based controller design for ∗-languages shall be transferred and an abstraction of the

low-level closed-loop behaviour shall be used. By property H1 of the IO-controller

H, i.e. K ⊆ E , follows that the external closed-loop behaviour is a subset of the ex-

ternal specification behaviour pω
ceE , i.e. Lhi = pω

ceK ⊆ pω
ceE . Hence, in order to solve

(Σhi, Lhi, Ehi), it is proposed to use the specification pω
ceE as an abstraction of the ex-

ternal closed-loop behaviour Lhi; see Figure 4.6 to the right.

There are several reasons why a computational improvement is expected from this pro-

cedure. First, the use of the projection to the alphabet Σce hides detailed information

about the direct interaction between low-level plant and low-level controller, informa-

tion that is not necessary for the design of the high-level controller due to structural

properties of the IO-control problem. Further, in contrast to the actual closed-loop K,

specification E does not express how the control objective is achieved and, hence, is

often less complex. In addition, it has been shown that the specification E can often

be formulated just on the alphabet Σce; see e.g. (Baier and Moor, 2015). Note that, in

addition, the abstraction pω
ceE is already given by the low-level control problem. There-

fore, further computational effort in order to receive appropriate abstractions for the

high-level is avoided.

The main challenge in the area of abstraction-based design for ∗-languages is to guar-

antee that hierarchical control consistency, as well as non-blocking is given in the

closed-loop system. In the proposed approach for input/output systems, similar ques-

tions have to be considered. The first question results from the fact that the external IO-

closed-loop behaviour shall be reused as IO-plant for the high-level control problem.

Hence, it has to be analysed, whether the IO-plant properties P1 and P2 are retained

under closed-loop composition and, thus, also satisfied by Lhi. The second question

results from the intended usage of the specification as abstraction. As in the case of

abstraction-based controller design for ∗-languages, it has to be shown that a solution

of (Σhi, pω
ceE , E

hi) also solves the actual problem (Σhi, Lhi, Ehi). In particular, it has to

be analysed, whether the actual closed-loop system satisfies the specification, property

H1, and whether the controller is ω-admissible w.r.t. (Σuc,Σo,L
hi), property H2.

As it turns out, an affirmative answer for the first question can be derived easily from

the fact that the IO-closed-loop satisfies K1 and K5; see Proposition 3.2.2. However,

the structural requirements P1 and P2 are not sufficient yet to provide an affirmative

answer for the second question. Although solutions Hhi of (Σhi, pω
ceE , E

hi) are readily

observed to also satisfy property H1 for the actual control problem (Σhi, Lhi, Ehi), it is

necessary to impose an additional condition on the IO-plant L in order to guarantee

property H2.

78

Chapter 4. Hierarchical and modular controller design for ω-languages

4.2.1 Properties of the non-anticipating IO-plant

The additional condition imposed on the IO-plant has been studied first in (Moor et al.,

2011) in the context of abstraction-based controller design for not necessarily topo-

logically closed ω-languages. The definition relies on a system description with al-

ternating inputs U and outputs Y , comparable to the input/output structure given in

the IO-control-problem. The condition introduced therein is based on the definition

of ω-controllability under complete event observation that has been introduced in

Definition 3.1.4. Observe that locally-free inputs, as imposed by P2, guarantee com-

pleteness of an IO-closed-loop, even in an abstraction-based controller design. How-

ever, in (Moor et al., 2011) it has been demonstrated that they do not imply a non-

blocking closed-loop for an abstraction-based controller design. In Figure 4.7, this

fact is demonstrated by a small example. A simple IO-plant is given, with the alpha-

a) b) c)

Figure 4.7: a) IO-plant L b) Abstraction Lhi c) Abstraction-based controller Hhi

bets Up := {a,b} and Yp := {A,B}. Property P1 is easily verified. Regarding locally-

free inputs, observe that the events a and b are both active in the states S1 and S3.

Note further that the given IO-plant is not topologically closed. Figure 4.7 b) shows a

possible abstraction Lhi ⊇ L. In contrast to the original plant, the abstraction is topo-

logically closed. Figure 4.7 c) shows an admissible solution to an abstraction-based

control problem (Σhi,Lhi,Ehi). It is obvious that the controller Hhi, although it is a so-

lution for the abstraction-based control problem, is conflicting w.r.t. L. In particular,

the infinite-time closed-loop behaviour is empty. While P2 requires the plant to accept

any input locally, an additional structural plant property is necessary to require that the

plant is always in the position to choose its outputs such that it satisfies its own live-

ness properties. Hence, the plant may never anticipate the input in its infinite future.

In (Moor et al., 2011) a variation of Willems’ notion of non-anticipating input/output

system is developed as a sufficient structural plant property for a non-conflicting

79

Section 4.2. Abstraction-based control problem for input/output systems

closed-loop. Based on those considerations, the additional requirement P3 is imposed

on L to denote it as a non-anticipating IO-plant.

Definition 4.2.1 Non-anticipating IO-plant

Given an alphabet Σpe = Σp ∪̇ Σe, the discrete event system L ⊆ Σω
pe is a non-

anticipating IO-plant, if

P1 L⊆ ((YpUp)
∗(YeUe)

∗)ω ⊆ Σω
pe,

P2 preL possesses locally free inputs Up and Ue, and

P3 L is ω-controllable w.r.t. (Up ∪̇Ue, cloL). �

Technically, property P3 is a controllability condition, where the inputs events (the

events, the plant is not able to restrict) are considered the uncontrollable events. The

algorithm given in (Thistle and Wonham, 1992) can be applied to test for P3.

a) b) c)

Figure 4.8: a) non-anticipating IO-plant L b) Abstraction Lhi c) Controller Hhi

To demonstrate property P3, consider again, with a slight variation, the simple example

in Figure 4.8 a). The only difference here to the example in Figure 4.7 is transition A

from state S4 to state S3. However, by this additional transition, the plant is always

in the position to reach eventually its marked state and satisfy its liveness property,

independently from the control inputs. Hence, the controller Hhi in Figure 4.8 c) is

non-conflicting w.r.t. L, although its design is based on the abstraction Lhi.

Note that the non-anticipating property propagates from L to the full IO-plant be-

haviour LΣ, introduced in Definition 3.2.5.

Lemma 4.2.1

If L is a non-anticipating IO-plant, then LΣ is ω-controllable w.r.t. (Σc ∪̇ Up ∪̇
Ue, cloLΣ).

80

Chapter 4. Hierarchical and modular controller design for ω-languages

Proof. Note that LΣ = (p−ω
pe (L ∪ preL))∩ (clo((Yp(YcUc)

∗Up)
∗ (YeUe)

∗)ω) , implies

preLΣ ⊆ pre(p−ω
pe (L∪ preL)) = p−1

pe preL. Pick an arbitrary string s ∈ preLΣ, let r :=
ppes, and observe that r ∈ preL. Since L is non-anticipating, choose Wr ⊆ L, such that

r ∈ preWr, and preWr is controllable w.r.t. (Up ∪̇Ue, preL), and Wr is relatively closed

w.r.t. cloL. Recall that relative closedness w.r.t. a closed language implies closedness.

In particular, Wr is closed. To establish the non-anticipating property of LΣ, consider

the candidate Vs := (p−ω
pe (Wr ∪ preWr)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω). Clearly,

Vs ⊆ LΣ and preVs ⊆ prep−ω
pe (Wr ∪ preWr) = p−1

pe preWr. Further, it is that s ∈ preVs,

since ppes = r ∈ preWr and s ∈ pre((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω . To show controllability,

pick an arbitrary string ŝ ∈ preVs and σ ∈ Σc ∪̇Up ∪̇Ue such that ŝσ ∈ preLΣ. In par-

ticular, ppeŝ ∈ ppep−1
pe preWr = preWr and ppe(ŝσ) ∈ ppe preLΣ ⊆ preL. Controllability

of preWr w.r.t. preL implies that ppe(ŝσ) ∈ preWr. In addition, there exists u ∈ Σω
pe,

such that ppe(ŝσ)u∈Wr. Choose w∈Σω such that ŝσw∈ clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω

and pω
pe(ŝσw) = ppe(ŝσ)u. Note that ŝσw ∈ Vs and, hence, ŝσ ∈ preVs. Finally, relative

closedness of Vs w.r.t. cloLIO,Σ̄ has to be established. Since cloLIO,Σ̄ is a closed super-

set of Vs, relative closedness of Vs and closedness of Vs are equivalent. This is obtained

by

Vs = (p−ω
pe (Wr ∪preWr)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω)

= (p−ω
pe cloWr ∪p−ω

pe preWr)∩ (clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω)

= (clop−ω
pe Wr) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω).

The intersection of two topologically closed languages is topologically closed. �

By the following proposition, the non-anticipation property is also preserved in the full

IO-closed-loop behaviour and an additional closed-loop property is obtained.

Proposition 4.2.2

If H is a solution to the control problem (Σ, L, E), and if L is a non-anticipating IO-

plant, then the IO-closed-loop behaviour satisfies K1–K6:

K1 K enforces the specification E , i.e., K ⊆ E ,

K2 K is ω-admissible w.r.t. (Σuc, Σo, LΣ),

K3 K is ω-normal w.r.t. (Σo, LΣ),

K4 preK is normal w.r.t. (Σo,preLΣ),

K5 preK possesses locally free inputs Uc and Ue.

K6 K is ω-controllable w.r.t. (Uc ∪̇Ue, cloK).

81

Section 4.2. Abstraction-based control problem for input/output systems

Proof. K1–K5 have been readily verified in Proposition 3.2.2. Regarding K6, the claim

is proven by construction of a suitable Vs ⊆ K for an arbitrarily chosen s ∈ preK. Note

that, by Lemma 4.2.1, LΣ is a non-anticipating IO-plant. Thus, choose Ṽs ⊆ LΣ, such

that s ∈ pre Ṽs, pre Ṽs is controllable w.r.t. (Σc ∪̇Up ∪̇Ue, preLΣ), and Ṽs is relatively

closed w.r.t. cloLΣ. In particular, Ṽs is closed. By Proposition 3.2.2, K satisfies K1–

K5. Referring to K2, choose Ws ⊆ K with s ∈ preWs, and preWs is controllable w.r.t.

(Σuc, preLΣ), and Ws is relatively closed w.r.t. LΣ. To establish ω-controllability of

K w.r.t. cloK, consider the candidate Vs := Ṽs ∩Ws. Clearly, Vs ⊆ K. Furthermore,

Vs = Ṽs ∩Ws = Ṽs ∩ (cloWs)∩LΣ = Ṽs ∩ (cloWs) = (clo Ṽs)∩ (cloWs) ⊇ cloVs, i.e.,

Vs is closed and, thus, relatively closed w.r.t. any superset. To show controllability of

preVs w.r.t. preK, pick r ∈ pre(Ṽs ∩Ws) ⊆ (pre Ṽs)∩ (preWs) and σ ∈ Uc ∪̇Ue such

that rσ ∈ preK ⊆ preLΣ. By controllability of pre Ṽs and preWs, it follows that rσ ∈
(pre Ṽs)∩ (preWs). To establish rσ ∈ pre(Ṽs ∩Ws), observe that each event in Σ is

uncontrollable for either pre Ṽs or preWs. Thus, starting with r0 = rσ, an unbounded

sequence (rn)⊆ (pre Ṽs)∩ (preWs), with limit w := lim(rn) ∈ (clo Ṽs)∩ (cloWs), can

be constructed. Since Ṽs is closed, it is w ∈ Ṽs ⊆ LΣ. By relative closedness of Ws w.r.t.

LΣ, it follows that w ∈Ws. Hence, rσ ∈ pre(Ṽs ∩Ws). �

4.2.2 Propagation of plant properties

Coming back to the first of the two questions, asked in the beginning of the present

Subsection, it is now possible to show that the plant properties P1–P3 are retained

under closed-loop composition. In particular, the external closed-loop behaviour that

results from the presented controller design is again a non-anticipating IO-plant.

Theorem 4.2.3 (Baier and Moor, 2012)

For a non-anticipating IO-plant L and an IO-specification E , consider a solution H of

the control problem (Σ, L, E). Then the external closed-loop pω
ceK, with K = LΣ ∩HΣ,

is a non-anticipating IO-plant, too.

Proof. Regarding the event ordering P1, refer to K1 and E1 to obtain pω
ceK ⊆

((YcUc)
∗(YeUe)

∗)ω . Regarding locally free inputs P2, recall from K5 that K has lo-

cally free inputs Uc and Ue, that are preserved under projection to Σce. It is left to

verify non-anticipation P3. Pick s ∈ prepω
ceK. Then, there exists t ∈ preK such that

pcet = s. According to K6, it is possible to choose Wt ⊆ K such that t ∈ preWt , and

preWt is controllable w.r.t. (Uc ∪̇Ue, preK), and Wt is closed. As a candidate to estab-

lish P3, let Vs := pω
ceWt . Note that Vs ⊆ pω

ceK. Further, s = pcet ∈ pce preWt = preVs.

To verify controllability of preVs, consider an arbitrary ŝ ∈ preVs and σ ∈ Uc ∪̇Ue

such that ŝσ ∈ prepω
ceK. Then, there exists t̂ ∈ preK such that pcet̂ = ŝ and t̂ ∈ preWt .

Furthermore, t̂σ ∈ preK, since ŝσ = pce(t̂σ) ∈ pce preK. Controllability of preWt

82

Chapter 4. Hierarchical and modular controller design for ω-languages

implies that t̂σ ∈ preWt and pce(t̂σ) ∈ pce preWt = preVs. Consequently, the candi-

date preVs is controllable w.r.t. (Uc ∪̇Ue, prepω
ceK). To verify closedness of Vs, observe

that Vs = pω
ceWt = (pω

ce cloWt)∩Σω
ce = clopω

ceWt . �

As a consequence of this result, the external closed-loop behaviour Lhi satisfies the

properties requested from the IO-plant on the next higher controller design level.

4.2.3 Abstraction-based controller design

Although the external closed-loop behaviour Lhi = pω
ceK could be used for the next

design step, for computational reasons, it is preferable to use the abstraction pω
ceE .

However, from the abstraction-based control problem for ∗-languages, it is known that

the major challenge is to guarantee a non-conflicting behaviour. Hence, following the

argumentation in (Moor et al., 2011), first it is analysed, whether the behaviour of the

full IO-plant LΣ can be represented as a union of languages with particular proper-

ties that support the argumentation of the abstraction-based controller design; see also

(Baier and Moor, 2012).

Lemma 4.2.4

For a non-anticipating IO-plant L, the full IO-plant behaviour can be represented as a

union LΣ = ∪a∈ALa, where for all a ∈ A

(i) La has locally free inputs Uc, Up ∪̇Yc, and Ue.

(ii) La is closed.

Proof. Technically, P3 together with (Baier and Moor, 2012), Proposition 9, implies

that LΣ itself is the supremal ω-controllable sub-language of LΣ. Thus, by (Moor et al.,

2011), Proposition 12, LΣ can be represented as a union LΣ = ∪a∈ALa, where, for

each, a ∈ A, preLa is controllable w.r.t. (Σc ∪̇Up ∪̇Ue, preLΣ) and La is closed. To

establish (i), pick s ∈ Σ∗, µ,µ ′ ∈Uc, with sµ ∈ preLa. The locally free input of preLΣ

implies sµ ′ ∈ preLΣ, and controllability of preLa w.r.t. preLΣ implies, that sµ ′ ∈ preLa.

Locally free inputs Up ∪̇Yc, and Ue are verified likewise. �

Next, it is analysed, whether it is possible to implement a non-conflicting closed-loop

behaviour w.r.t. the original IO-plant based on a solution that has been designed on the

basis of an abstraction.

83

Section 4.2. Abstraction-based control problem for input/output systems

Lemma 4.2.5

Given a control problem (Σ, L, E) with a non-anticipating IO-plant L, let L′ ⊆ Σω

denote a plant abstraction, i.e., L⊆ L′. Consider any solution H of the control problem

(Σ, L′, E). If V ′ ⊆ L′
Σ ∩HΣ, and if preV ′ is controllable w.r.t. (Σuc, L

′
Σ), and if V ′ is

relatively closed w.r.t. L′
Σ, then LΣ and V ′ are non-conflicting.

Proof. For V ′ ⊆L′
Σ∩HΣ it has to be shown that, if preV ′ is controllable w.r.t. (Σuc, L

′
Σ),

and if V ′ is relatively closed w.r.t. L′
Σ, then LΣ and V ′ are non-conflicting, i.e., that

pre(LΣ ∩ preV ′) = (preLΣ)∩ (preV ′). Pick an arbitrary string s ∈ (preLΣ)∩ (preV ′).
Referring to Lemma 4.2.4, represent LΣ as LΣ = ∪a∈ALa with La satisfying condi-

tions (i) and (ii). In particular, there exists a ∈ A with s ∈ preLa ⊆ LΣ ⊆ L′
Σ. To extend

s ∈ (preLa)∩ (preV ′) by one event, pick σ such that sσ ∈ preLa. If σ ∈ Σuc, then

controllability of preV ′ implies sσ ∈ preV ′, and thus sσ ∈ (preLa)∩ (preV ′). If, on

the other hand, σ ∈ Up ∪̇Yc, Lemma 4.2.4, condition (i), implies that s(Up ∪̇Yc) ⊆
preLa. Referring to the event ordering in the definition of LΣ, decompose s = rν
with ν ∈ Uc ∪̇Yp. Again by the definition of LΣ, now using rν ∈ preV ′ ⊆ preL′

Σ,

the existence of σ ∈ Up ∪̇Yc is obtained such that sσ ∈ preV ′ and, thus, conclude

with sσ ∈ (preLa)∩ (preV ′). Repeatedly extending s, a strictly monotone sequence

(sn) ⊆ (preLa)∩ (preV ′) is constructed, with limit w := lim(sn) ∈ (cloLa)∩ (cloV ′)
and s = s0 < w. Since La is closed, w ∈ La is obtained to observe w ∈ La ∩ (cloV ′)⊆
LΣ ∩L′

Σ ∩ (cloV ′) = LΣ ∩V ′. In particular, s ∈ pre(LΣ ∩V ′). �

Any controller candidate V ′, found by using the abstraction L′ as plant, will result

in a non-conflicting closed loop composed from the original plant L and the candi-

date V ′. Hence, the theorem regarding abstraction-based controller design is adapted

from (Moor et al., 2011) to the closed-loop configuration with external signals; see

Figure 4.6.

Theorem 4.2.6 (Baier and Moor, 2012)

Given a control problem (Σ, L, E) with a non-anticipating IO-plant L, let L′ ⊆ Σω

denote a plant abstraction, i.e., L ⊆ L′. Then, any solution H of (Σ, L′, E) also solves

(Σ, L, E).

Proof. Note that H trivially enforces the specification H1, since LΣ∩HΣ ⊆L′
Σ∩HΣ ⊆ E .

It is left to verify admissibility H2. Pick an arbitrary s ∈ (preLΣ)∩ (preHΣ). Since

H is a solution to (Σ, L′, E), choose V ′
s ⊆ L′

Σ ∩HΣ such that s ∈ preV ′
s, and preV ′

s

is controllable w.r.t. (Σuc, preL′
Σ), and preV ′

s is prefix-normal w.r.t. (Σo, preL′
Σ), and

V ′
s is relatively closed w.r.t. L′

Σ. The candidate Vs := V ′
s ∩LΣ is chosen. Observe that

Vs ⊆ L′
Σ ∩HΣ ∩LΣ = HΣ ∩LΣ and s ∈ (preLΣ)∩ (preHΣ)∩ (preV ′

s). Lemma 4.2.5 im-

plies that s ∈ pre(LΣ ∩ V ′
s) = preVs. Regarding controllability, pick any sν ∈ preLΣ

with s ∈ preVs and ν ∈ Σuc. By controllability of preV ′
s w.r.t. preL′

Σ and LΣ ⊆ L′
Σ, it

84

Chapter 4. Hierarchical and modular controller design for ω-languages

can be deduced that sν ∈ preV ′
s. Again by Lemma 4.2.5 follows that sν ∈ pre(LΣ ∩

V ′
s). Hence, preVs is controllable w.r.t. preLΣ. Regarding prefix-normality, first ob-

serve that (preLΣ)∩ (p−1
cp pcp preVs)⊆ (preLΣ)∩ (p−1

cp pcp preV ′
s) = (preLΣ)∩ (preL′

Σ)∩
(p−1

cppcp preV ′
s) = (preLΣ)∩ (preV ′

s) = pre(LΣ ∩ V ′
s) = preVs, where the last equality

is by Lemma 4.2.5. Together with preVs ⊆ preLΣ, this constitutes prefix-normality

of preVs w.r.t. (Σo, LΣ). Regarding relative closedness, observe that (cloVs)∩LΣ ⊆
(cloV ′

s)∩L′
Σ ∩LΣ = V ′

s ∩LΣ = Vs, concluding the proof of H2. �

Finally, an affirmative answer to both questions can be provided. Propagation of plant

properties by the IO-closed-loop behaviour is given and an abstraction-based controller

design is possible due to the additional plant property P3. Hence, Theorem 4.2.3 and

Theorem 4.2.6 formally justify the hierarchical controller design in Figure 4.6.

4.3 Hierarchical and modular control problem for

input/output systems

In addition to the hierarchical abstraction-based controller design, the idea of modular

controller design shall be transferred to the framework of input/output systems; see

Figure 4.9.

YlUl

IO-environment I

IO-plant L1

Up,1Yp,1

Ye,1Ue,1

IO-controller H1

Uc,1Yc,1

IO
-c

lo
se

d
-l

o
o

p
K

1

IO-plant L2

Up,2Yp,2

Ye,2Ue,2

IO-controller H2

Uc,2Yc,2

IO
-c

lo
se

d
-l

o
o

p
K

2

UcYc

M
o

d
u

la
r

IO
-s

y
st

em

Figure 4.9: Modular control problem

85

Section 4.3. Hierarchical and modular control problem for input/output systems

In accordance with the modular control approach for ∗-languages, the given system

consists of several independent non-anticipating IO-plants and for each IO-plant a local

closed loop is designed. By definition the given IO-plants do not share any events,

i.e. the alphabets of the closed loops are disjoint. Thereby, the composition of both

closed loops is non-blocking, by definition. However, physical dependencies between

both systems exist and can be considered by means of an additional model called IO-

environment. Basically, the IO-environment interacts with the IO-plants in a similar

fashion as the IO-controller. Hence, in order to guarantee non-conflicting behaviour,

particular properties have to be imposed on this model. The behaviour of the composed

system is described by means of a particular construction, introduced as modular IO-

system. Following the ideas of modular and hierarchical control, the external behaviour

of the composed system shall be reused as IO-plant for the high-level control problem.

Thus, it has to be analysed whether the IO-plant properties P1 - P3, that are requested

in the basic control problem, are retained under modular IO-system composition. In

particular, it has to be shown that they are satisfied by the external behaviour of the

IO-system, which shall be used for the controller design on the high-level.

In the following it is explained step-by-step how to compose IO-plants. From The-

orem 4.2.3 it is known that the external closed-loop behaviour satisfies again the

plant properties P1 - P3. Hence, instead of considering the local IO-closed-loops, they

are replaced by IO-plants to simplify further argumentations. Properties of the IO-

environment are introduced and the composition of IO-plants and the IO-environment

to a modular IO-system is defined. Finally, it is verified that the IO-plant properties

are retained under the proposed system composition. Thus, the resulting external be-

haviour is again an IO-plant, and can be subject to subsequent controller design.

4.3.1 Properties of the IO-system composition

Figure 4.10 shows the basic composition that is discussed in this Subsection. Several

IO-plants are composed by a shuffle construction. The IO-environment serves as a

model to further restrict the resulting behaviour regarding physical dependencies of

the given IO-plants.

86

Chapter 4. Hierarchical and modular controller design for ω-languages

IO-plant L1

Up,1Yp,1

Ye,1Ue,1

IO-plant L2

Up,2Yp,2

Ye,2Ue,2

UpYp

M
o

d
u

la
r

IO
-s

y
st

em

YlUl

IO-environment I

Figure 4.10: Modular IO-System

In the first step, just the IO-plants are composed and the IO-environment is let aside.

Definition 4.3.1 IO-plant ω-composition

Given a number m ∈ N of IO-plants Ln ⊆ Σω
n , with Σn = Up,n ∪̇Yp,n ∪̇Ue,n ∪̇Ye,n, n =

1, . . . ,m. The IO-plant ω-composition is defined by

L‖ := L1 ‖ · · · ‖ Lm := {w ∈ ((YpUp)
∗(YeUe)

∗)ω | pω
n w ∈ Ln for n = 1, . . . ,m} ,

with the composed plant alphabet Σpe := Σ1 ∪̇ · · · ∪̇Σm, and the input and output alpha-

bets Up := ˙⋃m

n=1Up,n, Yp := ˙⋃m

n=1Yp,n, Ue := ˙⋃m

n=1Ue,n, Ye := ˙⋃m

n=1Ye,n. �

Since all alphabets are assumed to be disjoint, the above IO-plant ω-composition is

a simple shuffle product of ω-languages. However, in order to maintain the structural

IO-plant requirements regarding input/output alternation in the composed system, it is

necessary to restrict the shuffle accordingly and demand the composed system to be

a subset of ((YpUp)
∗(YeUe)

∗)ω . This restriction is possible, since an arbitrary output

of any plant is always followed by an input selected by the operating controller. As

a consequence, it is just demanded that the controller, which operates a composed

system, replies instantaneously to any output event by an input event directed to the

respective plant component. However, locally free inputs are obviously not given, since

the union of the respective inputs of all plant components is considered as inputs of

the composed system. In order to guarantee locally free inputs with respect to the

composed system, the union is taken with an artificial error behaviour that accounts

for missing input events.

87

Section 4.3. Hierarchical and modular control problem for input/output systems

Definition 4.3.2 IO-shuffle

Given a number m ∈ N of IO-plants Ln ⊆ Σω
n , with Σn = Up,n ∪̇Yp,n ∪̇Ue,n ∪̇Ye,n, n =

1, . . . ,m. Then, the IO-shuffle is defined by

LIO := L1 ‖IO
· · · ‖

IO
Lm := L‖∪Lerr ⊆ Σω

pe ,

with the IO-plant ω-composition L‖ and the error behaviour

Lerr :=
⋃

x∈{e,p}

m
⋃

k=1,
k 6=n

m
⋃

n=1

((Σ∗
peYx,n)∩ (preL‖))Ux,k((YpUp)

∗(YeUe)
∗)ω

For easier reference, replace ⋒ :=
⋃

x∈{e,p}

⋃m
k=1,k 6=n

⋃m
n=1. �

Note that any relevant specification will implicitly prevent the controller from issuing

miss-directed input events in order to avoid the error behaviour in the closed-loop

configuration. Before the composition is continued and the IO-environment is added,

it is analysed whether the IO-shuffle preserves the IO-plant properties P1–P3.

Proposition 4.3.1

Given m ∈ N non-anticipating IO-plants Ln ⊆ Σω
n , n = 1, . . . ,m, then the IO-shuffle

LIO := L1 ‖IO
· · · ‖

IO
Ln is a non-anticipating IO-plant, too.

Proof. Regarding the event ordering P1, it is given by definition that L‖ ⊆
[(YpUp)

∗(YeUe)
∗]ω . Referring to the definition of Lerr, this implies that Lerr ⊆

[(YpUp)
∗(YeUe)

∗]ω , and, hence, LIO ⊆ [(YpUp)
∗(YeUe)

∗]ω . Regarding locally free in-

puts, property P2, the attention is focused on the input alphabet Up, pick an arbitrary

sµ ∈ preLIO, with µ ∈Up, and an alternative input symbol µ ′ ∈Up. By P1, decompose

s = tν with ν ∈ Yp,n for some n. If tν ∈ Lerr, it follows that tνµ ′ ∈ preLerr ⊆ preLIO

by the definition of Lerr, and, hence, tνµ ′ ∈ LIO. Else, tν 6∈ Lerr and, consequently,

tν ∈ preL‖ by the definition of LIO. Here, two more cases can be distinguished. First,

if µ ′ ∈ Up,n, the locally free input Up,n of preLn implies that pn(s)νµ ′ ∈ preLn and,

thus tνµ ′ ∈ preL‖ ⊆ preLIO. In the the second case it is µ ′ ∈Up,k for some k 6= n, and

again obtain tνµ ′ ∈ preLerr ⊆ preLIO. This establishes that Up is a locally free input of

LIO. The free input Ue is verified likewise, concluding the proof of P2. Regarding non-

anticipation, property P3, ω-controllability of LIO w.r.t. (Up ∪̇Ue,cloLIO) has to be

verified. Pick an arbitrary string t ∈ preLIO and denote by s the longest prefix of t such

that s ∈ preLIO. In the following, it is first constructed a candidate Vs for s, relevant

properties of Vs are analysed, a respective error behaviour for Vs is constructed and, fi-

nally, a candidate Vt for t is deduced that proves ω-controllability. To find a candidate

for s, denote rn := pns for n= 1, . . . ,m. Choose w∈L‖, s<w, to observe pω
n w∈Ln and,

88

Chapter 4. Hierarchical and modular controller design for ω-languages

hence, rn ∈ preLn, for all n = 1, . . . ,m. Since each Ln is non-anticipating, it is possible

to choose Vr,n ⊆ Ln with rn ∈ preVr,n and preVr,n satisfies A1 and A2. In particular,

Vr,n is closed. For the string s, define the candidate Vs :=
(

⋂m
n=1 clop−ω

n Vr,n

)

∩ Lseq

with Lseq := (Σ1Σ1 + ...+ΣmΣm)
ω ∩ Σ|s|(ε +Σ)(Σ1Σ1 · · ·ΣmΣm)

ω . Note that, as a fi-

nite intersection of closed languages, Vs itself is closed. To show that Vs ⊆ LIO, pick

w ∈ Vs and n arbitrarily. By w ∈ clop−ω
n Vr,n, it is prew ⊆ prep−ω

n Vr,n and, hence,

pn prew ⊆ preVr,n. Referring to the definition of Lseq, pn prew is unbounded. This

implies that pω
n w = limpn prew ⊆ limpreVr,n = Vr,n, i.e., pω

n w ∈ Vr,n. By the arbitrary

choice of w and n, it follows that Vs ⊆ L‖ ⊆ LIO. Based on Vs an error behaviour is

constructed Vs,Err := ⋒((Σ∗
peYx,n)∩ (preVs))Ux,k((YpUp)

∗(YeUe)
∗)ω The candidate for

t is based on Vs,Err. Define Vt := cloVs,Err. To show that t ∈ preVt , is is analysed

whether s ∈ preVs. Therefore, an arbitrary ŝ ∈ preLseq is selected. It is claimed that

r̂n := pnŝ ∈ preVr,n for all n implies ŝ ∈ preVs. From r̂n ∈ preVr,n, choose ûn ∈ Σω
n such

that r̂nûn ∈ Vr,n. The alphabets Σ1 to Σm are disjoint, and it is possible to choose û in

the shuffle p−ω
1 û1 ∩ ·· · ∩ p−ω

m ûm such that pω
n (ŝû) = r̂nûn ∈ Vr,n and ŝû ∈ Lseq. Thus, it

follows indeed that ŝ ∈ preVs. As an immediate consequence, s ∈ preVs. By definition

t/s ∈ pre(⋒Ux,k((YpUp)
∗(YeUe)

∗)ω)⊆ Vs,Err/s. Hence, t ∈ Vt . To show that Vt ⊆ LIO,

observe that Vt can be divided into Vt = Vt,1 ∪ Vt,2, with Vt,1 := ⋒(clo((Σ∗
peYx,n)∩

(preVs))) and Vt,2 := ⋒(((Σ∗
peYx,n)∩ (preVs))cloUx,k((YpUp)

∗(YeUe)
∗)ω). Obviously

Vt,1 ⊆ limpreVs = Vs ⊆ L‖ ⊆ LIO. As a consequence and by definition, Vt,2 =
⋒((Σ∗

peYx,n)∩ (preVs))Ux,k((YpUp)
∗(YeUe)

∗)ω ⊆ Lerr. Thus Vt ⊆ LIO. Regarding con-

trollability of preVt w.r.t. (Up ∪̇Ue,preLIO), pick an arbitrary string ŝ ∈ preVt and

σ ∈ Σuc, such that ŝσ ∈ preLIO. Two different cases can be differed. First, ŝσ ∈ preL‖.

Hence, ŝ∈ preVs. Denote j the index of the corresponding component, i.e. σ∈Σ j. Con-

trollability of preVr, j w.r.t. preL j implies (pjŝ)σ ∈ preVr, j. Thus, it is pn(ŝσ) ∈ preVr,n

for all n and ŝσ ∈ preLseq. This implies ŝσ ∈ preVs ⊆ preVt . Second, ŝσ ∈ preLerr.

Since preLerr/ŝ = preVs,Err/ŝ, ŝσ ∈ preVs,Err ⊆ preVt . Obviously, the candidate Vt is

closed, hence also relatively closed w.r.t. cloLIO. �

The composition is continued by adding the IO-environment; see Figure 4.11.

YeUe

IO-environment I

YlUl Low-level environment events Σl

Low-level plant events Σe

Figure 4.11: IO-environment

89

Section 4.3. Hierarchical and modular control problem for input/output systems

It provides interaction interfaces for low-level plant events Σe, and low-level environ-

ment events Σl := Yl ∪̇Ul that propagate interfaces that result available after the com-

position with several IO-plants. In general, the IO-environment models dependencies

between the individual plant components, like already demonstrated in Figure 4.10.

By modelling the dependencies in separate models, modular controller can be designed

locally without causing conflicting behaviour in the composed system. Further, it facil-

itates the redesign of the layout of the given composed system. Nevertheless, in order

to avoid conflicting behaviour of the IO-environment with the respective IO-plants, it

is necessary to require the following specific properties.

Definition 4.3.3 IO-environment

Given an alphabet Σel := Σe ∪̇Σl, with Σl = Yl ∪̇Ul, the discrete event system I ⊆ Σω
el is

an IO-environment, if

I1 I ⊆ ((YeUe)
∗(YeYlUlUe)

∗)ω .

I2 preI possesses locally free inputs Ul and Ye.

I3 I is topologically closed. �

Regarding I1, certain similarities between the event ordering of the IO-environment

and the IO-controller introduced in Section 3.2 can be noticed. Like the high-level con-

trol events, the low-level environment events represent an interface that results avail-

able in the propagated part of the composed system used for the next composition level.

Properties I2 and I3 are logical consequences in order to guarantee non-conflicting be-

haviour and locally free inputs of the composed system.

In order to compose the IO-shuffle LIO with an IO-environment, both languages are

raised to the modular IO-system alphabet Σ̄ := Σp ∪̇Σe ∪̇Σl, to consider the full IO-

shuffle behaviour.

Definition 4.3.4 Full IO-shuffle behaviour

Given an IO-shuffle LIO ⊆ Σω
pe. The full IO-shuffle behaviour is given by

LIO,Σ̄ := (p−ω
pe (LIO∪preLIO)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) �

Similar to Proposition 4.2.1, and the inverse projection of the IO-plant to the overall

alphabet, IO-plant property P3 is propagated again in the inverse projected IO-shuffle.

Proposition 4.3.2 (Baier and Moor, 2015)

For non-anticipating IO-plant components Ln ⊆ Σω
n , n = 1, . . . ,m, the full IO-shuffle

LIO,Σ̄ ⊆ Σ̄ω is ω-controllable w.r.t. (Up ∪̇Ul,cloLIO,Σ̄). �

90

Chapter 4. Hierarchical and modular controller design for ω-languages

In addition, the full IO-environment behaviour is also raised to the overall alphabet by

a similar construction.

Definition 4.3.5 Full IO-enviroment behaviour

Given an IO-environment I ⊆ Σω
el . The full IO-environment behaviour is given by

IΣ̄ := (p−ω
el (I ∪preI)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) �

Note that the full IO-environment is topologically closed due to property I3.

The final composition procedure of full IO-environment and full IO-shuffle behaviour

is analogue to the closed-loop construction in Section 3.2. The composed system is

received by a simple intersection of both behaviours.

Definition 4.3.6 Modular IO-system

Given an IO-shuffle LIO ⊆ Σω
pe and an IO-environment I ⊆Σω

el . The modular IO-system

is given by LIO,Σ̄ ∩IΣ̄ ⊆ Σ̄ω . �

In order to analyse relevant properties of the resulting behaviour of the modular IO-

system the focus lies on verifying non-conflicting behaviour of LIO,Σ̄ and IΣ̄ and the

propagation of IO-plant property P3.

Proposition 4.3.3

For non-anticipating IO-plant components Ln ⊆ Σω
n , n = 1, . . . ,m and an IO-

environment I ⊆ Σω
el, consider the full behaviours LIO,Σ̄ ⊆ Σ̄ω and IΣ̄ ⊆ Σ̄ω , respec-

tively. Then, LIO,Σ̄ and IΣ̄ are non-conflicting. Moreover, the modular IO-system

LIO,Σ̄ ∩IΣ̄ is ω-controllable w.r.t. (Up ∪̇Ul, clo(LIO,Σ̄ ∩IΣ̄)).

Proof. The claim is verified by the same line of thought as in the proof of Proposi-

tion 4.2.2. Given non-anticipating IO-plant components, consider the full IO-shuffle

and the full environment behaviour.

LIO,Σ̄ = (p−ω
pe (LIO∪preLIO)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) ,

IΣ̄ = (p−ω
el (I ∪preI)) ∩ (clo((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω) ,

respectively. It has to be shown that LIO,Σ̄ and IΣ̄ are non-conflicting and that LIO,Σ̄∩IΣ̄

is ω-controllable w.r.t. (Up ∪̇Ul, clo(LIO,Σ̄ ∩ IΣ̄)). Beginning with ω-controllability, a

suitable candidate Vs ⊆ LIO,Σ̄ ∩IΣ̄ for an arbitrarily chosen s ∈ pre(LIO,Σ̄ ∩IΣ̄) is con-

structed. Referring to Proposition 4.3.2, there exists Ws ⊆ LIO,Σ̄, such that s ∈ preWs,

preWs is controllable w.r.t. (Σl ∪̇Up ∪̇Ue, preLIO,Σ̄), and Ws is relatively closed w.r.t.

cloLIO,Σ̄. In particular, Ws is closed. To establish ω-controllability of LIO,Σ̄ ∩ IΣ̄ w.r.t.

91

Section 4.3. Hierarchical and modular control problem for input/output systems

clo(LIO,Σ̄ ∩IΣ̄), consider the candidate Vs :=Ws∩IΣ̄. Clearly, Vs ⊆ LIO,Σ̄ ∩IΣ̄. Further-

more, Vs =Ws∩IΣ̄ = (cloWs)∩ (cloIΣ̄)⊇ cloVs, i.e., Vs is closed and, thus, relatively

closed w.r.t. any superset. To show controllability of preVs w.r.t. pre(LIO,Σ̄ ∩ IΣ̄), pick

r ∈ pre(Ws ∩ IΣ̄) and σ ∈ Ul ∪̇Up such that rσ ∈ pre clo(LIO,Σ̄ ∩ IΣ̄) ⊆ (preLIO,Σ̄) ∩
(preIΣ̄). By controllability of preWs, it follows that rσ ∈ (preWs). The locally free in-

put Ul of I and the inverse projection in the definition of IΣ̄ imply rσ ∈ (preIΣ̄) for ei-

ther case σ∈Ul or σ∈ ∪̇Up, respectively. So far, it is rσ∈ pre(Ws) ∩ (preIΣ̄). To estab-

lish rσ ∈ pre(Ws ∩IΣ̄), observe that each event in Σ is either uncontrollable for preWs

or a locally free input for preIΣ̄. Thus, starting with r0 = rσ, an unbounded sequence

(rn)⊆ (preWs)∩(preIΣ̄) with limit w := lim(rn)∈ (cloWs)∩(cloIΣ̄) =Ws∩IΣ̄ can be

constructed. Hence, rσ∈ pre(Ws∩IΣ̄). This concludes the proof of ω-admissibility. To

show that the languages are non-conflicting, pick an arbitrary s∈ (preLIO,Σ̄) ∩ (preIΣ̄).
In the argument, it is referred to the same candidate Ws as used in the first part of this

proof. In particular, it is s ∈ (preWs) ∩ (preIΣ̄) and, as above, it is possible to start

with s0 = s to construct an unbounded sequence (sn) ⊆ (preWs)∩ (preIΣ̄) by succes-

sively appending events that are either uncontrollable for preWs or a locally free input

for preIΣ̄. Consequently, it follows that w := lim(sn) ∈ (cloWs)∩ (cloIΣ̄) =Ws∩IΣ̄ ⊆
LIO,Σ̄ ∩IΣ̄ and thus s ∈ pre(LIO,Σ̄ ∩IΣ̄). �

Hence, non-conflicting behaviour of LIO,Σ̄ and IΣ̄ and the propagation of IO-plant prop-

erty P3 are satisfied and can be further used to verify the propagation of the IO-plant

properties P1 - P3 in the external modular IO-system behaviour, which shall be used

as IO-plant on the next hierarchical level.

4.3.2 Propagation of plant properties

For computational reasons, hiding further information that is not necessary for the

controller design of the next higher level is of interest. In particular, the focus lies on

hiding events from Σe, to hide IO-plant interfaces that are already connected to other

IO-plants in the modular IO-system. The external IO-system behaviour is denoted by

Lpl := pω
pl (LIO,Σ̄ ∩ IΣ̄); see also Figure 4.10. It is readily verified that Lpl satisfies the

IO-plant properties P1 - P3.

Theorem 4.3.4

Given a modular IO-system, consisting of the plant components Ln ⊆ Σω
n , n= 1, . . . ,m,

an IO-environment I ⊆ Σω
el , and the external IO-system behaviour Lpl. If Ln ⊆ Σω

n ,

n = 1, . . . ,m are non-anticipating IO-plants, then so is Lpl.

92

Chapter 4. Hierarchical and modular controller design for ω-languages

Proof. Regarding the event ordering P1, observe that the modular IO-system satis-

fies Lpl ⊆ pω
pl((YpUp)

∗(YeUe)
∗(YeYlUlUe)

∗)ω = ((YpUp)
∗(YlUl)

∗)ω . Regarding locally

free inputs P2, it is first shown that LIO,Σ̄ ∩ IΣ̄ possesses locally free inputs Up

and Ul. Pick s,s′ ∈ pre(LIO,Σ̄ ∩ IΣ̄) and µ,µ ′ ∈ Up, as well as ν,ν ′ ∈ Ul such that

sµ,s′ν ∈ pre(LIO,Σ̄ ∩ IΣ̄). By the locally free inputs Up and Ul of preLIO,Σ̄ and preIΣ̄

sµ ′,s′ν ′ ∈ (preLIO,Σ̄)∩ (preIΣ̄) is obtained, and, referring to non-conflictingness from

Proposition 4.3.3, sµ ′,s′ν ′ ∈ pre(LIO,Σ̄ ∩preIΣ̄). Thus, LIO,Σ̄ ∩IΣ̄ indeed possesses lo-

cally free inputs Up and Ul, which are retained under projection to Σpl. It is left to

verify non-anticipation P3. Pick any s ∈ preLpl = prepω
pl (LIO,Σ̄ ∩ IΣ̄). Then, there ex-

ists t ∈ pre(LIO,Σ̄ ∩IΣ̄) such that pplt = s. Recall from Proposition 4.3.3 that LIO,Σ̄ ∩IΣ̄

is ω-admissible w.r.t. (Up ∪̇Ul, clo(LIO,Σ̄ ∩ IΣ̄)). Thus, Wt ⊆ LIO,Σ̄ ∩ IΣ̄ can be cho-

sen such that t ∈ preWt , and preWt is controllable w.r.t. (Up ∪̇Ul, pre clo(LIO,Σ̄ ∩IΣ̄)),
and Wt is closed. As a candidate to establish P3, let Vs := pω

plWt ⊆ pω
plLpl and observe

s= pplt ∈ ppl preWt = preVs. Controllability and closedness of Vs follow as in the proof

of Theorem 4.2.3, and it follows that Lpl is ω-admissible w.r.t. (Up ∪̇Ul,cloLpl). �

This concludes the procedure regarding modular controller design. It has been proven

that the IO-plant properties P1 - P3 are retained under the proposed modular IO-system

composition. A direct consequence is the possibility to design controller in a modular

fashion, to compose modular controlled IO-plants together with the respective IO-

environment to a modular IO-system, as given in Figure 4.9, and to use the resulting

external IO-system behaviour as new IO-plant for the subsequent controller design.

Theorems 4.2.3 and 4.3.4 together verify that it is possible to apply a hierarchical and

modular controller design for large-scale systems modelled by ω-languages.

4.4 Example - Application on transport systems

The proposed approach is demonstrated in the context of the controller design for a

large-scale transport system; see Figure 4.12.

work

piece

work

piece

work

piece

work piece stack conveyor belt conveyor belt exit slide

...

Figure 4.12: Transport system example

93

Section 4.4. Example - Application on transport systems

It consists of several conveyor belts, as described in Section 3.2, which are arranged

next to each other. A work piece stack delivers work pieces from the left and an exit

slide receives work pieces from the left. The purpose of this transport system, is the

transport of work pieces from left to right. However, to keep it simple, the focus of

this example lies on the controller design of the conveyor belt chain, considering an

increasing number of conveyor belts and an increasing number of work pieces in the

transport system. The example demonstrates the use of IO-plant models for the con-

veyor belts. Further, IO-environment models are introduced. In addition, the use of

IO-specifications as abstractions, and the efficient hierarchical abstraction-based and

modular controller design are discussed. Again, Büchi automata are applied for the

representation of the respective ω-languages and the software library (libFAUDES,

2015) is used to compute respective solutions.

4.4.1 Low-level controller design

On the low-level, a number of conveyor belts is given. The set-up of the conveyor belts

is similar to the one described already in Section 3.2, including respective events and

their properties.

Remark 4.4.1

Owing to the limitation of the libFAUDES to provide algorithms only for Büchi au-

tomata, it is necessary to simplify the models from Section 3.2. In the hierarchical

context, projections of ω-languages have to be computed in order to reduce systems to

their external behaviour, for example in the context of the modular IO-system. How-

ever, the computation of projections leads, in general, to non-deterministic automata.

After determinisation, as for example in (Mukund, 1996), the result is not necessarily a

Büchi automaton, but an automaton with a stronger acceptance condition, for example

a Rabin automaton. Proceeding with algorithms of the libFAUDES is not possible and

another software library would be necessary. However, to the author’s best knowledge

a software library that includes as well Rabin automata, as algorithms for supervisor

synthesis is not available. As a work around, the example has been elaborated such

that only ω-closed behaviours are involved in projection constructions or behaviours

where it is possible to reconstruct eventuality properties after the projection. �

Figure 4.13 shows the physical ad hoc model of the conveyor belt. The only difference

to the model in Figure 3.14 is the missing immediate event enter after a work piece has

exited the belt. It is assumed that the receipt event is always generated before another

work piece enters the belt. This fact is guaranteed by the additional requirement to stop

a work piece at the present conveyor belt sensor as long as the next conveyor belt is

still occupied.

94

Chapter 4. Hierarchical and modular controller design for ω-languages

Figure 4.13: Physical ad hoc model of the conveyor belt

As demonstrated in Section 3.2, the physical model can be transformed into an IO-

plant; see Figure 4.14.

Figure 4.14: Conveyor belt, IO-plant model

In Table 4.1, the IO-plant events are categorized into respective alphabets. IO-plant

property P1, the event ordering, and IO-plant property P2, locally free inputs, are read-

ily verified as before in Section 3.2. To verify IO-plant property P3, the property of

non-anticipation, the supremal ω-controllable sub-language of the conveyor belt be-

haviour w.r.t. its topological closure is computed. Thereby, P3 is verified and the model

in Figure 4.14 is an IO-plant.

95

Section 4.4. Example - Application on transport systems

Ye = {get, put} get/put a work piece from/to the environment

Ue = {pack, nack} acknowledgement of recent get/put

Up = {bm+, boff} plant actuator to operate belt motor

Yp = {idle, wpar, wplv, receipt} plant sensors with dummy idle if nothing else

is to report

Table 4.1: List of events of the conveyor belt IO-plant model

The control objective is basically the same as in Section 3.2, with the difference that

more than one conveyor belt is involved. Hence, to the operator output events full and

empty another output event wpa is added to indicate whether a work piece is available,

while it is still possible to receive (wpr) or to deliver (wpd) another one. In the specifi-

cation, the intended semantics of the introduced events is defined by relating them to

the environment events; see Figure 4.15 and Table 4.2.

Yc = {empty, full, wpa} operator feedback to indicate presence of a work piece

Uc = {wait, wpd, wpr} operator event to wait, or to receive/deliver a work piece

Ye = {get, put} get/put a work piece from/to the environment

Ue = {pack, nack} acknowledgement of recent get/put

Table 4.2: List of events of the IO-specification

The specification automaton exclusively refers to the alphabet Σce and it is left to the

synthesis procedure to figure out how to drive the plant by interleaving events from Σp.

Technically, the depicted automaton realises the projection pω
ceE of the formal specifi-

cation E . In particular, there is no need to compute pω
ceE from E , avoiding a potentially

exponential growth in the state count.

Although, the specification automaton exclusively refers to the alphabet Σce, it is still

possible to further add requirements regarding the internal plant events, constructing a

subset of the original specification. Here, two additional requirements are considered,

which are represented in Figure 4.16.

96

Chapter 4. Hierarchical and modular controller design for ω-languages

Figure 4.15: Specification for arbitrary number of conveyor belts

As mentioned before, the specifications request the conveyor belt to stop after the

arrival of a work piece (wpar) and before sending a feedback to the operator. Further it

is required to stop in the case that the operator has sent a wait command. Finally, the

specification properties E1 and E2 are verified as in Section 3.2.

97

Section 4.4. Example - Application on transport systems

Figure 4.16: Additional specifications regarding plant events

The solution of the given IO-control-problem, yields to a non-empty closed loop K

that satisfies closed loop properties K1–K3 and is further relatively closed w.r.t. the

plant behaviour. Thus, a controller that satisfies properties H1 and H2 is obtained by

projection of cloK to Σcp. The resulting controller amounts to 31 states. The conveyor

belts in the transport system are assumed to be identical. Hence it is possible to use

the synthesised controller for each belt as low-level controller. In order to formally end

up with disjoint alphabets, the convention to prefix each event with an identifier of the

respective component is used; e.g., cb1 boff to turn off the motor of the first conveyor

belt cb1, counting from the left to the right.

4.4.2 Hierarchical and modular controller design

The control objective on the high level is the coordination of a group of conveyor belts

to behave in the same way as a single conveyor belt. Hence, the specification on each

level is equal to the specification on the low-level, given in Figure 4.15.

In Figure 4.17, the hierarchical control architecture that is build-up is shown for a chain

of four conveyor belts. For each single conveyor belt a low-level controller (H1 −H4)

is provided. Aside from the event labelling, they are identical. Next, the two leftmost

conveyor belts are coordinated by the controller H12 one level above. Step by step,

another conveyor belt is added from left to right by adding another controller for the

component considered before and the additional locally controlled conveyor belt. As

IO-plant behaviour of each component, the specification of the closed loop one level

below is used, applying thereby an abstraction-based controller design. Since the be-

haviour of the IO-plants and the IO-specification are equal in each level, controller

design has to be performed just once and the resulting controller can be applied for

each level, just by relabelling respective events. Hence, the controller H12,H1−3 and

H1−4 are structurally equal, aside from the particular event relabelling.

98

Chapter 4. Hierarchical and modular controller design for ω-languages

IO-environment I12

Ye,1Ue,1 Ye,2Ue,2

Up,1Yp,1 Up,2Yp,2 Up,3Yp,3 Up,4Yp,4

IO-controller H1

Uc,1Yc,1 Uc,2Yc,2

IO-controller H2 IO-controller H4

Uc,4Yc,4

IO-controller H3

Uc,3Yc,3

Ye,3Ue,3

Ye,4Ue,4

IO-controller H12

IO-controller H1−3

Uc,1−4Yc,1−4

IO-controller H1−4

Uc,12Yc,12

Uc,1−3Yc,1−3

IO-environment I1−3

IO-environment I1−4

Yl,1−4Ul,1−4

Yl,1−3Ul,1−3

Yl,12Ul,12

Figure 4.17: Hierarchical control architectures for the conveyor belts cb1, cb2, cb3 and cb4

In order to combine two locally controlled components to a modular IO-system, for

example the two left most conveyor belts cb1 and cb2, an IO-environment is used,

as described in Section 4.3. The respective automaton is given in Figure 4.18 and the

respective alphabets in Table 4.3. Owing to the physical arrangement of the conveyor

belts, the departure of a work piece from belt cb1 corresponds to the arrival of the work

piece at belt cb2. This correspondence is modelled in the IO-environment by a direct

sequence of cb1 put–cb1 pack–cb2 get–cb2 pack.

99

Section 4.4. Example - Application on transport systems

Figure 4.18: Environment for the two conveyor belts cb1 and cb2

Yl = {cb12 get, cb12 put} get/put a work piece from/to the environment

Ul = {cb12 pack, cb12 nack} acknowledgement of recent cb12 get/cb12 put

Ye,1 = {cb1 get, cb1 put} get/put a work piece from/to the environment

Ue,1 = {cb1 pack, cb1 nack} acknowledgement of recent cb1 get/cb1 put

Ye,2 = {cb2 get, cb2 put} get/put a work piece from/to the environment

Ue,2 = {cb2 pack, cb2 nack} acknowledgement of recent cb2 get/cb2 put

Table 4.3: List of events of the IO-environment

For the purpose of further compositions at subsequent stages of the hierarchical design,

the proposed environment also introduces events to represent work pieces entering

or leaving the group of the two conveyor belts. These additional events are prefixed

by cb12 . The IO-environment properties I1, the event ordering, and I2, locally free

inputs, are verified by the same inspection as P1 and P2. IO-environment property I3,

the topological closedness, is an immediate consequence of the marking of all states.

In the next step, the closed-loop behaviour of the two belts cb1 and cb2 under low-level

control can be composed with the environment to an IO-system as discussed in Sec-

tion 4.3. Referring to Theorem 4.2.3, the individual closed loops satisfy the IO-plant

properties P1–P3, and, by Theorem 4.3.4, so does the composed system including the

environment. In particular, the design of a high-level controller that coordinates the

100

Chapter 4. Hierarchical and modular controller design for ω-languages

two conveyor belts w.r.t. their effect on the environment can be based on an abstrac-

tion. The latter can be constructed by replacing the low-level closed-loop behaviours

with their respective specifications prior to the composition with the environment. The

resulting automaton counts 679 states.

Remark 4.4.2

In order to receive the external behaviour of the IO-composition, the projection has to

be applied. In general, this operation results into a non-deterministic Büchi automaton

and a determinisation procedure has to be applied to receive a deterministic structure.

However, as mentioned in Remark 4.4.1, the resulting automaton is in general not a

Büchi automaton and cannot be converted into a Büchi automaton. In order to be able

to compute the whole example using the libFAUDES, ω-closed specifications have

been developed, in order to have the possibility to reproduce liveness properties in

the composed system after the projection. It is proposed to build the composition on

basis of the closed behaviours, to apply the projection and to intersect afterwards with

a behaviour that considers the alternation of the involved plants on the infinite-time

axis.

Given the modular IO-system, and the specification in Figure 4.15, a controller is syn-

thesised with 2984 states. Thus, for the control of the two conveyor belts, two low-

level controllers with 31 states each and one high-level controller with 2984 states are

used. For an implementation of the controllers, there is no need to apply a parallel

composition to them. Thus, the overall state count that is relevant for application is

2×31+(2−1)×2984. Extending this approach to an arbitrary number of conveyor

belts n with n hierarchical levels, the overall state count is n×31+(n−1)×2984; see

Table 4.4.

number of conv. belts 1 2 3 4 5 6 7 8

hierarchical design 31 3046 6061 9076 12091 15106 18121 21136

monolithic design 16 147 1454 13892 132162 1376371 – –

Table 4.4: Controller state count for monolithic and hierarchical controller design

For the controller state count of the hierarchical controller design based on input/output

systems, it is observed a favourable linear growth in the number of conveyor belts.

Hence, the proposed approach compares well with a monolithic controller design with

an expected state count exponential in the number of conveyor belts.

101

Section 4.4. Example - Application on transport systems

To actually compare the hierarchical approach to a monolithic control problem, the

plant model in Figure 4.13 is used. The correspondence between the events exit and

enter of two neighbouring conveyor belts is modelled by an additional automaton that

prohibits any other plant event during the work piece exchange. The overall model

is obtained by parallel composition and a monolithic controller is computed. For the

controller design, the specification model in Figure 4.19 is used and adapted to the

respective number of considered conveyor belts. In Figure 4.19 it is given for two

conveyor belts.

Figure 4.19: Specification for monolithic control problem for two belts cb1 and cb2

The respective state counts for up to six conveyor belts are given in Table 4.4. The com-

putation of the results for more than six conveyor belts already exceeded the memory

capacities of a standard computer with a user memory of 16GB. Nevertheless, it is

readily observed that for more than three conveyor belts, the hierarchical design al-

ready provides a significantly smaller controller state count.

All the results have been validated and the expected closed loop behaviour have been

confirmed in simulation experiments. The animated simulator FlexFact (libFAUDES,

2015) has been used to simulate the continuous-time physical behaviour, including

digital signals for the purpose of controller interconnection provided via a network

interface. The hierarchy of controllers was interpreted by the discrete-event simulator

that is also provided by the software library libFAUDES. Here, events have been de-

fined as edges on the digital signals accessible via the network interface of the plant

simulation.

102

Chapter 4. Hierarchical and modular controller design for ω-languages

4.5 Conclusion - Hierarchical and modular controller

design

In this Chapter, a general introduction into the idea behind hierarchical and modu-

lar control has been given and different procedures for ∗-language control problems

have been discussed. Basic ideas of these procedures have been adopted to develop an

approach for the design of abstraction-based hierarchical and modular control archi-

tectures for ω-languages given in form of input/output systems. It is obvious from the

transport system example, that there exist various possibilities to build up the control

architecture. Figure 4.20 demonstrates just one possible procedure.

IO
-s

p
ec

ifi
ca

ti
o

n
E

h
i

L1 L2

Up,1Yp,1

YlUl

H1

Uc,1Yc,1

IO
-c

lo
se

d
-l

o
o

p
K

IO
-s

p
ec

ifi
ca

ti
o

n
E

IO
-s

p
ec

ifi
ca

ti
o

n
E

IO-controller Hhi

Uhi
cY hi

c

YlUl

⇒

⇐

IO
-s

p
ec

ifi
ca

ti
o

n
E

h
i

IO
-c

lo
se

d
-l

o
o

p
K̂

h
i

IO-controller Hhi

Uhi
cY hi

c

IO-controller H

UcYc UcYc

Up,2Yp,2

H2

Ue,1 Ye,1 Ue,2 Ye,2

Uc,2Yc,2

UpYp

IO
-c

lo
se

d
-l

o
o

p
K

h
i

M
o

d
u

la
r

IO
-s

y
st

em

IO-environment I

Figure 4.20: Proposal for the design of a hierarchical and modular control architecture

103

Section 4.5. Conclusion - Hierarchical and modular controller design

Here, the control hierarchy is structured into three control levels. In a first step, two

local modular controller are designed for two IO-plants. Next, the respective specifi-

cations are used as abstractions of the local closed loops. They are composed together

with an IO-environment to a modular IO-system. Its external behaviour is used for the

controller design on level two. For the controller design on level three, abstraction-

based design is applied again and the specification of the closed-loop in level two is

used as abstraction.

A similar set-up has been applied in the example in Subsection 4.4. The results therein

justify the approach to alternate in an arbitrary way controller synthesis, closed-loop

composition, abstraction and component composition. Compared to a monolithic ap-

proach, it has been demonstrated that the procedure is clearly more efficient, since a

linear growth of the computational effort in the number of components is achieved, in

contrast to the exponential growth in the monolithic context.

104

5 Summary

Since Ramadge and Wonham introduced for the first time their perspective of supervi-

sory control of discrete event systems in (Ramadge and Wonham, 1987b), several ap-

proaches have been developed to handle its application in large-scale systems; see e.g.

(Schmidt et al., 2008; Feng and Wonham, 2008; Leduc et al., 2005; Perk et al., 2008).

The approaches differ regarding the particular modelling framework, required struc-

tural conditions or the type of model abstraction that is applied. Nevertheless, they

share the fact that they are limited to modelling system behaviour with ∗-languages on

the finite-time horizon. However, in the context of supervisory control of ω-languages,

describing behaviour on the infinite-time axis, hierarchical and modular control ap-

proaches that enable an efficient controller design are still missing. Motivated thereby,

the contribution of this thesis is an approach to efficiently design hierarchical and mod-

ular control architectures for ω-languages. To the author’s best knowledge, it is the

first approach, that deals with modelling discrete event systems by ω-languages that

includes also general liveness properties, as well as with dividing the control task into

sub-tasks in order to build an abstraction-based hierarchical and modular control ar-

chitecture.

In Chapter 2 the particular modelling framework using discrete event systems and for-

mal languages is introduced. A supervisory control problem for finite-time behaviours

under partial event observation is set-up and a solution procedure is proposed. This par-

ticular control problem is further extended to include the property of completeness in

the closed-loop system, in order to lead over to the control problem on the infinite-time

horizon.

In Chapter 3 the control problem for ω-languages under complete and under partial

observation is presented. There exists a strong connection to the control problem for

finite-time behaviours, which is utilized to describe solutions to the control problem

for ω-languages. Following the considerations in (Thistle and Wonham, 1992), an al-

gorithm is proposed for the computation of solutions to the control problem under

complete observation, described by the propositional µ-calculus. Based on this al-

gorithm, a heuristic algorithm for the solution of the control problem under partial

event observation is described. Both algorithm are implemented in the software library

(libFAUDES, 2015). In the second part of this chapter, the basic control problem for

the proposed hierarchical control architecture is presented. It is based on the descrip-

tion by input/output systems derived from the Behavioural Systems Theory according

105

Chapter 5. Summary

to (Willems, 1991). The input/output framework has already been used for hierarchical

controller design in (Perk et al., 2008), involving only topologically closed behaviours.

In this thesis it is further elaborated towards the inclusion of more general liveness

properties, enabling further application areas.

In Chapter 4 basic concepts of abstraction-based hierarchical and modular control are

illustrated and applied to the control problem in the input/output framework. Particular

plant properties are introduced that are necessary for the application of abstraction-

based design. Further, step-by-step a composition procedure is proposed for locally

controlled systems, that shall be coordinated by high-level controller. It is shown, that

the properties of the given framework enable a systematic construction of a hierar-

chical and modular control architecture. As in the case of hierarchical and modular

approaches for ∗-languages, the respective computational effort can be reduced by the

avoidance of large monolithic models and dividing the control task into sub-tasks en-

forced by sub-controllers. In contrast to most of the approaches for ∗-languages and in

accordance with (Perk et al., 2008), abstraction procedures involving further computa-

tions are not required to build up the hierarchical control architecture. The abstractions

are already given by the specification of the underlying control problems. As a con-

sequence, the individual control levels can be synthesised independently from each

other, in arbitrary order and the computational effort can be reduced. Finally, a trans-

port system example has been used to illustrate step-by-step how to build up such a

control architecture for large-scale systems. The hierarchical controller design shows a

linear growth in the number of system components. In contrast, it has been shown that

a similar monolithic controller design requires highly more computational effort due

to an exponential growth of the system states in the number of components. Hence, for

a transport systems example, computational efficiency of the proposed approach has

been proven.

The design of appropriate models is an important topic that is still open to future re-

search and challenging for all synthesis approaches in this area, in particular for prac-

tical applications. Plant models are based on the physical system behaviour. Hence,

it is promising to elaborate a systematic way to extract them from the physical phe-

nomenon. Thereby, required plant properties like the IO-plant properties P1 - P3 are

expected to support a systematic design of adequate models. Once given an appropriate

representation of the uncontrolled behaviour, it can be reused easily for various con-

trol problems. The development of model libraries further simplifies the application.

In order to design appropriate specification models it seems to be promising to fur-

ther analyse the connection of the Supervisory Control Theory to the area of Temporal

Logics. This area has been extensively used for the verification of system behaviour, in

particular in the area of program verification. However, model discrepancies have been

a limiting factor up to now, to further analyse similarities in both areas. However, with

the presented approach, limitations could be resolved since ω-automata represent a

106

Chapter 5. Summary

common basis of both. Supervisory Control Theory could benefit from the experience

of a well established formalism to define required system behaviour. Nevertheless, in

order to apply the approach to industrial examples it is necessary to further elaborate

appropriate software for the computation of solutions. Available software libraries are

still restricted. The example presented in this thesis focused on Büchi-automata, which

can be handled by the software tool libFAUDES. However, the presented approach is

not limited to Büchi automata and can be applied to all kind of ω-automata. A respec-

tive software library, e.g. for Rabin automata, would enable further prospects regarding

the application of the presented procedure.

107

Appendix

A Technical details

This section collects a number of technical details to support the core arguments.

Lemma A.1

Consider Σuc ⊆ Σ, Σo ⊆ Σ, Σc ⊆ Σo, and L, K ⊆ Σω . If K is ω-controllable w.r.t.

(Σuc, L), then preK is controllable w.r.t. (Σuc, preL), and L and K are non-conflicting.

Proof. Regarding controllability, pick any s ∈ pre(K∩L) and σ ∈ Σuc, such that sσ ∈
preL. In particular, there can be chosen a Vs ⊆ L∩K, with s ∈ preVs, satisfying C1

and C2. Controllability C2 implies sσ ∈ preVs ⊆ pre(L ∩ K)⊆ preK. This concludes

the proof of controllability for preK. For non-conflictingness, pick an arbitrary s ∈
(preK) ∩ (preL) and choose again Vs ⊆ L∩K, with s ∈ preVs, satisfying C1 and C2.

Since s∈ preVs ⊆ pre(K ∩ L), it follows that s∈ pre(K ∩ L). This concludes the proof

of non-conflictingness. �

Lemma A.2

Let Σuc ⊆ Σ, Σo ⊆ Σ, Σc ⊆ Σo, and consider L⊆ Σω and K ⊆ Σω . If K is ω-admissible

w.r.t. (Σuc, Σo, L), then (preL) ∩ (preK) is prefix-normal w.r.t. (Σo, preL).

Proof. Pick an arbitrary string s ∈ (p−1
o po((preL)∩ (preK)))∩preL. Then there exists

s′ ∈ (preL)∩(preK) such that pos′= pos, and choose Vs′ ⊆L∩K, s′ ∈ preVs′ , satisfying

C1 - C3. Here, prefix-normality C3 implies s ∈ preVs′ . Together with preVs′ ⊆ pre(L∩
K)⊆ (preL)∩ (preK), follows s ∈ (preL)∩ (preK). �

109

B. Table of symbols

B Table of symbols

Important symbols used throughout this paper are summarized in the following tables.

General symbols

Symbol Description Page

Σ alphabet 10

Σc controllable events 21

Σo observable events 21

Σuc = Σ−Σc uncontrollable events 21

Σuo = Σ−Σo unobservable events 21

r,s, t ⊆ Σ∗ finite-length strings 10

u,v,w ⊆ Σω infinite-length strings 12

L,H,K,E ⊆ Σ∗ finite-time system behaviour, ∗-languages 10

L,H,K,E ,V ⊆ Σω infinite-time system behaviour, ω-languages 12

f supervisor 21

Γ control pattern 21

(preL) f ,(preL) f local closed-loop behaviour 23

L f finite-time closed-loop behaviour 23

L f infinite-time closed-loop behaviour 31

Operators

Symbol Description Page

pre prefix closure operator for ∗-languages/ω-languages 10/12

/ quotient operator 13

elig active event set operator 13

lim limit operator for ∗-languages 13

clo topological closure operator for ω-languages 13

sup supremum operator 25

p− projection from Σ∗ to Σ∗
− 11

p−1
− set-valued inverse projection from Σ∗

− to Σ∗ 11

pω
− projection from Σω to Σω

−∪Σ∗
− 14

p−ω
− set-valued inverse projection from Σω

−∪Σ∗
− to Σω 14

cpco controllability-prefix under complete observation 41

110

Appendix

Symbols in the context of input/output systems

Symbol Description Page

U input 57

Y output 57

Σp internal plant alphabet 60

Σe low-level plant alphabet 60

Σc high-level control alphabet 64

Σl low-level environment alphabet 90

Σpe = Σp ∪̇Σe plant alphabet 60

Σcp = Σc ∪̇Σp controller alphabet 59

Σel = Σe ∪̇Σl environment alphabet 90

Σ := Σp ∪̇Σe ∪̇Σc overall alphabet 64

Σ̄ := Σp ∪̇Σe ∪̇Σl modular IO-system alphabet 90

L IO-plant over alphabet Σpe 61

E IO-specification over alphabet Σ 64

H IO-controller over alphabet Σcp 66

K IO-closed-loop behaviour over alphabet Σ 67

I IO-environment over alphabet Σel 90

LΣ full plant behaviour over alphabet Σ 66

HΣ full controller behaviour over alphabet Σ 66

L‖ IO-plant ω-composition 87

Lerr error behaviour for IO-plant ω-composition 88

LIO IO-shuffle for IO-plants Ln, n = 1, ...,m 88

LIO,Σ̄ full IO-shuffle behaviour over alphabet Σ̄ 90

IΣ̄ full IO-environment behaviour over alphabet Σ̄ 91

111

Bibliography

B. Alpern and F. Schneider, “Defining liveness,” Information Processing Letters, vol. 21, no. 4,

pp. 181–185, 1985.

C. Baier and M. Kwiatkowska, “On topological hierarchies of temporal properties,” Funda-

menta Informaticae, vol. 41, p. 259, 2000.

C. Baier and T. Moor, “A hierarchical control architecture for sequential behaviours,” Workshop

on Discrete Event Systems 2012, pp. 259–264, 2012.

——, “A hierarchical and modular control architecture for sequential behaviours,” Discrete

Event Dynamic Systems, vol. 25, no. 1-2, pp. 95–124, 2015.

F. L. Baldissera and J. E. R. Cury, “Application of supervisory control theory to guide cellular

dynamics,” Workshop on Discrete Event Systems 2012, pp. 384–389, 2012.

J. R. Büchi, “Symposium on decision problems: On a decision method in restricted second

order arithmetic,” vol. 44, pp. 1 – 11, 1966.

C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd ed. Springer,

2008.

H. Cho and S. I. Marcus, “On supremal languages of classes of sublanguages that arise in

supervisor synthesis problems with partial observation,” Mathematics of Control, Signals

and Systems, vol. 2, no. 1, pp. 47–69, 1989.

——, “Supremal and maximal sublanguages arising in supervisor synthesis problems with

partial observations.” Mathematical Systems Theory, vol. 22, no. 3, pp. 177–211, 1989.

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Modelling and control of discrete event

systems,” 25th IEEE Conference on Decision and Control, 1986, pp. 604–607, 1986.

——, “Supervisory control of discrete-event processes with partial observations,” IEEE Trans-

actions on Automatic Control, vol. 33, no. 3, pp. 249–260, 1988.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state concurrent

systems using temporal logic.” ACM Transactions on Programming Languages and Systems,

vol. 8, no. 2, pp. 244–263, 1986.

A. E. C. da Cunha, J. E. R. Cury, and B. H. Krogh, “An assume-guarantee reasoning for hier-

archical coordination of discrete event systems,” Workshop on Discrete Event Systems 2006,

pp. 75–80, 2002.

113

Bibliography

M. H. de Queiroz and J. E. R. Cury, “Modular control of composed systems,” Proceedings of

the American Control Conference 2000, vol. 6, pp. 4051–4055, 2000.

——, “Modular supervisory control of large scale discrete event systems,” Workshop on Dis-

crete Event Systems 2000, pp. 103–110, 2000.

R. Ehlers, S. Lafortune, S. Tripakis, and M. Vardi, “Bridging the gap between supervisory

control and reactive synthesis: Case of full observation and centralized control,” Workshop

on Discrete Event Systems 2014, pp. 222–227, 2014.

E. A. Emerson and E. M. Clarke, “Characterizing correctness properties of parallel programs

using fixpoints,” in Automata, Languages and Programming. Springer Berlin Heidelberg,

1980, vol. 85, pp. 169–181.

E. A. Emerson and C.-L. Lei, “Efficient Model Checking in Fragments of the Propositional

Mu-Calculus,” Proceedings of the First Annual IEEE Symposium on Logic in Computer

Science (LICS), pp. 267–278, 1986.

L. Feng and W. Wonham, “Computationally efficient supervisor design: abstraction and mod-

ularity,” 8th International Workshop on Discrete Event Systems, 2006, pp. 3–8, 2006.

L. Feng and W. M. Wonham, “On the computation of natural observers in discrete-event sys-

tems,” Discrete Event Dynamic Systems, vol. 20, no. 1, pp. 63–102, 2010.

L. Feng and W. Wonham, “Supervisory control architecture for discrete-event systems,” IEEE

Transactions on Automatic Control, vol. 53, no. 6, pp. 1449–1461, 2008.

P. Gohari and W. M. Wonham, “On the complexity of supervisory control design in the RW

framework,” Systems, Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics,

vol. 30, no. 5, pp. 643–652, 2000.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, Reading, 1979.

G. Jirásková and T. Masopust, “On properties and state complexity of deterministic state-

partition automata,” in Proceedings of the 7th IFIP TC 1/WG 202 International Conference

on Theoretical Computer Science, ser. TCS’12. Berlin, Heidelberg: Springer-Verlag, 2012,

pp. 164–178.

A. Käß, “Modellbildung und Reglerentwurf eines dreigeschossigen Fahrstuhls,” Bachelorar-

beit, Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg,

2014.

R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event Systems. Kluwer

Academic Publishers, 1995.

R. Kumar, V. Garg, and S. I. Marcus, “On supervisory control of sequential behaviors,” IEEE

Transactions on Automatic Control, vol. 37, no. 12, pp. 1978 –1985, 1992.

114

Bibliography

O. Kupferman and M. Y. Vardi, “Synthesis with incomplete informatio,” in Advances in Tem-

poral Logic. Kluwer Academic Publishers, 2000, pp. 109–127.

S. Lafortune, “Modeling and analysis of transaction execution in database systems,” Automatic

Control, IEEE Transactions on, vol. 33, no. 5, pp. 439–447, 1988.

R. J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-based supervisory con-

trol - part ii: Parallel case,” IEEE Trans. on Automatic Control, vol. 50, no. 9, pp. 1336–1348,

2005.

libFAUDES, “Software library for discrete-event systems.” Version of January 2015,

http://www.rt.eei.uni-erlangen.de/FGdes/faudes, 2015.

F. Lin and W. M. Wonham, “On observability of discrete-event systems,” Information Sciences,

vol. 44, pp. 173–198, 1988.

F. Lin and W. Wonham, “Decentralized supervisory control of discrete-event systems,” Infor-

mation Sciences, vol. 44, no. 3, pp. 199 – 224, 1988.

C. Ma and W. Wonham, “Nonblocking supervisory control of state tree structures,” IEEE

Transactions on Automatic Control, vol. 51, no. 5, pp. 782–793, 2006.

Z. Manna and A. Pnueli, “A hierarchy of temporal properties,” Proc. 9th ACM Symposium on

Principles of Distributed Computing, pp. 377–408, 1990.

R. McNaughton, “Testing and generating infinite sequences by a finite automaton,” Information

and Control, vol. 9, no. 5, pp. 521 – 530, 1966.

T. Moor, “Natural projections for the synthesis of non-conflicting supervisory controllers,”

Workshop on Discrete Event Systems 2014, pp. 300–305, 2014.

T. Moor and J. Raisch, “Supervisory control of hybrid systems within a behavioural frame-

work,” Systems and Control Letters, vol. 38, no. 3, pp. 157–166, 1999.

T. Moor, J. M. Davoren, and J. Raisch, “Modular supervisory control of a class of hybrid

systems in a behavioural framework,” Proc. Euproean Control Conference (ECC2001), pp.

870–875, 2001.

T. Moor, J. Raisch, and J. M. Davoren, “Admissibility criteria for a hierarchical design of hybrid

control systems,” Proc. IFAC Conference on the Analysis and Design of Hybrid Systems

(ADHS’03’), pp. 389–394, 2003.

T. Moor, K. Schmidt, and S. Perk, “Applied supervisory control for a flexible manufactoring

system,” Workshop on Discrete Event Systems 2010, pp. 263–268, 2010.

T. Moor, K. Schmidt, and T. Wittmann, “Abstraction-based control for not necessarily closed

behaviours,” Proc. 18th IFAC World Congress, pp. 6988–6993, 2011.

115

Bibliography

T. Moor, C. Baier, T.-S. Yoo, F. Lin, and S. Lafortune, “On the computation of supremal sub-

languages relevant to supervisory control,” Workshop on Discrete Event Systems 2012, pp.

175–180, 2012.

T. Moor, C. Baier, and T. Wittmann, “Consistent abstractions for the purpose of supervisory

control,” IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 7291–7296,

2013.

M. Mukund, “Finite-state automata on infinite inputs,” Internal Report TCS-96-2, SPIC Math-

ematical Institute, 1996.

——, “Linear-time temporal logic and büchi automata,” Tutorial talk, Winter School on Logic

and Computer Science, Indian Statistical Institute, Calcutta, 1997.

P. Pena, J. Cury, and S. Lafortune, “Testing modularity of local supervisors: An approach based

on abstractions,” 8th International Workshop on Discrete Event Systems 2006, pp. 107–112,

2006.

S. Perk, T. Moor, and K. Schmidt, “Hierarchical discrete event systems with inputs and out-

puts,” Workshop on Discrete Event Systems 2006, pp. 427–432, 2006.

——, “Controller synthesis for an i/o-based hierarchical system architecture,” Workshop on

Discrete Event Systems 2008, pp. 474–479, 2008.

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” Proceedings of the 16th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 179–

190, 1989.

P. J. Ramadge, “Some tractable supervisory control problems for discrete-event systems mod-

eled by büchi automata,” IEEE Transactions on Automatic Control, vol. 34, no. 1, pp. 10–19,

1989.

P. J. Ramadge and W. M. Wonham, “Modular feedback logic for discrete event systems,” SIAM

Journal on Control and Optimization, vol. 25, no. 5, pp. 1202–1218, 1987.

——, “Supervisory control of a class of discrete event processes.” SIAM Journal on Control

and Optimization, vol. 25, no. 1, pp. 206–230, 1987.

——, “The control of discrete event systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.

K. Rohloff and S. Lafortune, “On the computational complexity of the verification of modular

discrete-event systems,” in Proc. 41 st IEEE Conference on Decision and Control, Las Vegas,

2002.

K. Schmidt and C. Breindl, “Maximally permissive hierarchical control of decentralized dis-

crete event systems,” IEEE Transactions on Automatic Control, vol. 56, no. 4, pp. 723–737,

2011.

116

Bibliography

K. Schmidt, E. Schmidt, and J. Zaddach, “A shared-medium communication architecture

for distributed discrete event systems,” Mediterranean Conference on Control Automation,

2007., pp. 1–6, 2007.

K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of decentralized discrete

event systems,” IEEE Trans. on Automatic Control, vol. 53, no. 10, pp. 2252–2265, 2008.

A. Tarski, “A lattice-theoretical fixpoint theorem and its applications.” Pacific Journal of Math-

ematics, vol. 5, no. 2, pp. 285–309, 1955.

J. G. Thistle, “Supervisory control of discrete event systems,” Mathematical and Computer

Modelling, vol. 23, no. 11/12, pp. 25 – 53, 1996.

J. G. Thistle and H. M. Lamouchi, “Effective control synthesis for partially observed discrete-

event systems,” SIAM J. Control and Optimization, vol. 48, no. 3, pp. 1858–1887, 2009.

J. G. Thistle and W. M. Wonham, “Control of ω-automata, church’s problem, and the emptiness

problem for tree ω-automata,” Computer Science Logic, vol. 626, pp. 367–381, 1992.

——, “Supervision of infinite behavior of discrete-event systems,” SIAM J. Control and Opti-

mization, vol. 32, no. 4, pp. 1098–1113, 1994.

——, “Control of infinite behavior of finite automata,” SIAM J. Control and Optimization,

vol. 32, no. 4, pp. 1075–1097, 1994.

J. Thistle, “On control of systems modelled as deterministic rabin automata,” Discrete Event

Dynamic Systems, vol. 5, no. 4, pp. 357–381, 1995.

W. Thomas, “Automata on infinite objects,” Handbook of theoretical computer science (vol.

B), The MIT Press, Cambridge, MA, pp. 133–191, 1990.

J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” IEEE TAC, vol. 36,

no. 3, pp. 259–294, 1991.

K. C. Wong, “On the complexity of projections of discrete-event systems,” IEEE Workshop on

Discrete Event Systems, pp. 201–208, 1998.

K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-event systems,” Discrete

Event Dynamic Systems: Theory and Applications, vol. 6, no. 3, pp. 241–273, 1996.

W. M. Wonham and P. Ramadge, “On the supremal controllable sublanguage of a given lan-

guage,” The 23rd IEEE Conference on Decision and Control, 1984, vol. 23, pp. 1073–1080,

1984.

W. Wonham and P. Ramadge, “Modular supervisory control of discrete-event systems,” Math-

ematics of Control, Signals and Systems, vol. 1, no. 1, pp. 13–30, 1988.

117

Bibliography

T.-S. Yoo, S. Lafortune, and F. Lin, “A uniform approach for computing supremal sublanguages

arising in supervisory control theory,” Technical Report, Department of EECS, University of

Michigan, 2002.

H. Zhong and W. M. Wonham, “On the consistency of hierarchical supervision in discrete-

event systems,” IEEE Transactions on Automatic Control, vol. 35, no. 10, pp. 1125–1134,

1990.

R. Ziller and J. Cury, “On the supremal Lm-closed and L-controllable sublanguages of a given

language,” Analysis and Optimization of Systems – Discrete Event Systems, vol. 199, pp.

80–85, 1994.

——, “On the supremal L-controllable sublanguage of a non-prefix-closed language,” Anais

do 10. Congresso Brasileiro de Automática e 6. Congresso Latino-Americano de Controle

Automático, vol. 2, pp. 260–265, 1994.

R. Ziller and K. Schneider, “Combining supervisor synthesis and model checking,” ACM

Transactions on Embedded Computing Systems, vol. 4, no. 2, pp. 331–362, 2005.

118

Bibliography

Eigene Publikationen

C. Baier and T. Moor, ”A hierarchical control architecture for sequential behaviours,”Workshop

on Discrete Event Systems 2012, pp. 259–264, 2012.

——, ”A hierarchical and modular control architecture for sequential behaviours,”Discrete

Event Dynamic Systems,, vol. 25, no. 1-2, pp. 95–124, 2015.

T. Moor, C. Baier, T.-S. Yoo, F. Lin, and S. Lafortune, ”On the computation of supremal sub-

languages relevant to supervisory control,”Workshop on Discrete Event Systems 2012, pp.

175–180, 2012.

T. Moor, C. Baier, and T. Wittmann, ”Consistent abstractions for the purpose of supervisory

control,”Conference on Decision and Control (CDC) in IEEE 52nd Annual, Dec 2013, pp.

7291–7296.

Betreute studentische Arbeiten

A. Käß, ”Modellbildung und Reglerentwurf eines dreigeschossigen Fahrstuhls,” Bachelorar-

beit, Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg,

2014.

119

	Cover
	Title page
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Hierarchical and modular control architecture
	1.1.2 Modelling with ω-languages

	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Formal Languages
	2.1.1 Basic notation for *-languages
	2.1.2 Basic notation for ω-languages

	2.2 Representation of formal languages
	2.2.1 Representation of *-languages
	2.2.2 Representation of ω-languages
	2.2.3 Constructions on finite-state automata

	2.3 Supervisory control of finite string languages
	2.3.1 Control problem with partial event observation
	2.3.2 Control problem with partial observation and completeness

	3 Monolithic controller design for ω-languages
	3.1 Supervisory control of infinite string languages
	3.1.1 Control problem under complete event observation
	3.1.2 Control problem under partial event observation
	3.1.3 Algorithmic solutions for infinite-string control problems

	3.2 Control problem based on input/output systems
	3.2.1 Properties of the IO-control-problem
	3.2.2 Properties of the IO-plant
	3.2.3 Properties of the IO-specification
	3.2.4 Solution to the control problem
	3.2.5 Properties of the closed-loop behaviour

	3.3 Conclusion - Monolithic controller design for ω-languages

	4 Hierarchical and modular controller design for ω-languages
	4.1 Hierarchical and modular controller design for *-languages
	4.1.1 Modular controller design
	4.1.2 Hierarchical abstraction-based controller design
	4.1.3 Hierarchical abstraction-based and modular controller design

	4.2 Abstraction-based control problem for input/output systems
	4.2.1 Properties of the non-anticipating IO-plant
	4.2.2 Propagation of plant properties
	4.2.3 Abstraction-based controller design

	4.3 Hierarchical and modular control problem for input/output systems
	4.3.1 Properties of the IO-system composition
	4.3.2 Propagation of plant properties

	4.4 Example - Application on transport systems
	4.4.1 Low-level controller design
	4.4.2 Hierarchical and modular controller design

	4.5 Conclusion - Hierarchical and modular controller design

	5 Summary
	Appendix
	A Technical details
	B Table of symbols

