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Abstract. In this paper, we formulate and robustly solve a quite gen-
eral class of hybrid controller synthesis problems. The type of controller
we investigate is the switching control mechanism of a hybrid automaton
(via guard and mode invariant sets), and the robustness result is with
respect to variations in the right hand sides of the differential equations
that depend continuously on a parameter. We present a novel method-
ology for controller design and synthesis which uses modal logic as a
formalism for reasoning about sets of plant states, and various operators
on sets arising from the differential equations and from metric tolerance
relations on the state space.

1 Introduction

In general terms, a hybrid system H can be said to satisfy a performance spec-
ification robustly if every system H’ in some nominated variation class around
H also satisfies that specification. Likewise, a synthesis procedure for a class
of control problems can be called robust if the nominal closed-loop hybrid sys-
tem obtained from the solution controller can be shown to robustly satisfy each
of the specifications of the problem, with respect to some nominated variation
class. Robustness in hybrid control systems is an under-explored topic. A start-
ing point is given in [10], which proposes a range of variation classes for hybrid
automata, including near relatives of those in the present work and its predeces-
sor [6]. Robustness issues for hybrid controller design, for a variety of different
control settings and problems, are also investigated in [3, 8,19, 21].

In this paper we find a robust solution to a rather general switching control
problem for hybrid systems. The plant consists of a finite number of continuous
systems, given by differential equations over a common state space; the con-
troller steers the plant state by determining when to discretely switch between
the various differential equations; and the closed-loop trajectories correspond
to those of (a subclass of) the widely accepted hybrid automaton model. In
addition to the well-studied classes of safety (reachability or invariance) and
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liveness (non-blocking and non-Zeno) performance specifications, we deal with
a class of event sequence specifications, requiring that trajectories traverse in
prescribed sequences through the blocks of a given finite partition of the plant
state space. This gives a general-purpose way of specifying the attainment of
local goals along hybrid trajectories, and integrating the type of event sequence
specifications examined in DES approaches to hybrid systems [5,12,17].

In [6], we develop an abstract algorithm which solves this controller synthesis
problem for arbitrary differential equations with unique solutions, with a proof
of finite termination derived from an assumption of compactness of the sets given
in the data of the specifications. In that work, we consider one type of variation
class that is motivated by considerations of sensor and actuator imprecision, and
is obtained by allowing a metric tolerance or “margin of error” around the guard
sets and in the reset relations; we have shown that our synthesis procedure is
robust with respect to that class. In the present paper, we turn our attention
to the more traditional control-theoretic perspective on robustness in terms of
parameter uncertainty; i.e. variations in the right hand sides of the differential
equations that depend continuously on a parameter. While these two variation
classes are quite distinct, a key technical tool for both cases are metric tolerance
relations, which are put to use in different ways.

This paper also demonstrates the flexibility and adaptability of our novel
methodology for hybrid controller synthesis based on modal logic, first developed
in [6, 7]. For our purposes, modal logic is best viewed as a formalism for reasoning
about sets of states and operators on sets arising from relations on the state
space. Considered as a family of logics, modal logic includes the temporal logics
more commonly used in formal verification of hybrid systems. More precisely,
we work with a polymodal fusion of several normal monomodal logics [20]. The
main benefits our methodology are the following.

e Modal logic provides us with a uniform framework for investigating not only
the widely used pre- and post-image operators induced by continuous flows,
but also operators induced by metric tolerance relations, and the latter are
essential in the context of robustness. As distinct from temporal logics, we
reason about the component parts of hybrid trajectories, and this is essential
for synthesis as opposed to analysis of hybrid systems.

e We use modal logic not merely as a convenient notation, but also draw on
the power of deductive proof systems. In the course of proving the correctness
of our synthesis algorithm, we show that certain key modal formulas are for-
mally deducible from the statement of the algorithm together with explicit
assumptions; this appeals to the soundness of a suitable Hilbert proof system
w.r.t. the Kripke (transition system) semantics. In future work we will employ
automated reasoning tools based on the decidability of the logical consequence
and validity problems for modal logics, utilising tableaux proof systems [9].

e In our use of modal logic, we make a clean separation between (i) determining
what sets need to be computed in order to solve the synthesis problem, and
(ii) how and when such computations can be performed effectively. Issue (i)
is resolved by the our synthesis algorithm below. Issue (ii) is essentially the



standard model checking problem for hybrid systems, and any model checking
tools — either exact [1,2,14,15] or approzimate [4,13,16] — can be used to
implement our synthesis algorithm.

In this short paper, we restrict our focus to the core ingredients, and to those
aspects of the work that are crucial for plant parameter robustness. Consult [6]
for a more detailed account of our framework based on modal logic.

The body of the paper is organised as follows. In Section 2, we briefly review
hybrid automata, define plant parameter variation classes, and give a key result
on parameterised vector fields. In Section 3, we formally state the controller
synthesis problem. Section 4 is a terse review of modal logic applied to hybrid
systems, and in Section 5, we give our abstract synthesis algorithm, formalised
in the language of modal logic. In Section 6, we outline the proof of the main
result of robust correctness. The concluding Section 7 includes a brief discussion
of effective implementations of the procedure.

2 Hybrid Automata

We work with the standard and widely accepted hybrid automaton model of
Alur, Henzinger et al. [1,2].

Definition 1. A hybrid automaton is a system

H=(Q,E X {F;, Invg}eeq; {Tqﬁq/,GT’dqﬁq/}(q,q/)eE ), (1)

where: @ is a finite set of discrete control modes; FE C @ x @ is the discrete
transition relation; X C R"™ is the continuous state space; for each q € Q,
F, : X — R" is a vector field, and Invy C X;  and for each (q,q') € E,
rq.qy C X X X is a reset relation, and Grdg, = dom(rq ).

In order to ensure that closed-loop trajectories are well-defined, we assume
that the vector fields F;, are locally Lipschitz continuous, and the state space
X is open. Then from each initial condition x¢ € X, each differential equation
& = Fy(x) has a unique maximal integral curve in X on a well defined maximal
interval of time [0, T} (x)), where T (zo) € RT U {oo}. We denote this maximal
curve by

@, (20, )¢ [0, Ty(xo)) — X. (2)

In the case of Ty(xg) < oo, it is well known that @, (zo, -) escapes from any
bounded subset of X at some time less than or equal to T,(zo). For the scope
of this paper, we can restrict attention to bounded invariant sets Inv,. Then
maximal curves from zo € Inv, either leave Inv, within finite time or stay
within Inv, forever with T, (zo) = co. Closed-loop trajectories are then defined
as follows.

Definition 2. A trajectory of a hybrid automaton H is a finite or infinite se-
quence n = (A, qi,vVi)ier such that for each i € I:

o the duration A; € RT U{oco}, with A; = oo only if I is finite and i = max(I);



e the discrete state q; € Q;
e the continuous curve 7y; : [0, Ai] — X satisfies y; (t) = Pq, (%‘(O)a t) and (t) €
Invg, for allt € [0, A;], with the convention that [0, A;] is [0,00) if A; = oo;
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o if i <sup(l), then (¢i,qi+1) € E and v, (4A;) ~i+1(0).

A trajectory will be called: step-infinite if it makes infinitely many switches;
time-infinite if the sum over all durations is unbounded; and full if it is either
step-infinite or time-infinite or else it is blocked, in the sense that it cannot be
extended to reach any further guard region.

A broad framework of variation classes for hybrid automata is proposed in
[10]. Our interest here is in parameter variations in the vector fields.

Definition 3. Given a hybrid automaton H as in Eg. (1), let F/: X — R"
be a family of vector fields parameterised by the discrete modes q € Q and an
uncertainty parameter v € V.C R™, where 0 € V and qu = F,. Then

H'=(Q,E,X, {F;, Invg}eeq  {Tq.q s Gqu,q’}(q,q’)eE ) (3)
HE={H"] |[v|| <e} (4)

defines a parameterised variation class around the nominal model H® = H with
variation bound .

In correspondence with the nominal model, we denote the maximal integral
curves of the vector field Fy by &g (o, -): [0, T;(w0)) — X where T;'(zo) €
R* U{oc}. The following assumptions on the vector fields are to ensure that the
flow @} (z9, t) is continuous in v and z.

(A0) The parameter set V' is open. The vector field F}}(x) is continuous in both
x and v. Furthermore, F(z) is locally Lipschitz continuous in 2 uniformly
in v; i.e. there exists a Lipschitz constant which may depend on z but not
on v.

In particular, assumption (AOQ) ensures that for any given finite time interval
and any given open tube around the nominal integral curve ®4(xo,t), all varia-
tions @ (o, t) evolve within that tube — provided that the variation is sufficiently
small; e.g. [11], Theorem 2.6. In the hybrid setting, we need to examine contin-
uous parameter dependency w.r.t. a given domain D in the state space, rather
than w.r.t. a given interval on the time axis. That is, we are interested in the
dependency of fﬁg(mo, t) in v as long as that curve evolves within an invariant
set Inv,. We formalise these ideas in terms of metric tolerance relations, and in
so doing, set up the link to modal logics.

Definition 4. Given a metric d on the state space X, the §-ball Bs(x) of radius
0 > 0 with centre x € X is defined by

Bs(z) % {ye X |d(z,y)<d}. ()

For a set A C X, we call the set Bs(A) < {z € X| Bs(z) N A # 0} the 6-
expansion of A. We also call the (reflexive and symmetric) relation Bs C X x X



a metric tolerance relation. For the scope of this paper, d is assumed to be a
metric that induces the standard Euclidean topology on X.

For a set A C X, let
T, (A, x0) = sup{T < T/ (z0) | (Vs €[0,7)) D (w0, s) € A} (6)
denote the time at which &7 (xo, -) escapes from A, so T,/ (zo) = T, (X, zo).
Proposition 1. Let D be a compact set with Bys(D) C X for a given metric
tolerance § > 0. Furthermore, assume Tq(Bss(D),xo) < oo for all xg € D. Then
there exits a variation bound € > 0 such that T (D,xo) < Ty(Bas(D),x0) <
T, (w0) and D5 (zo, t) € Bas(Py(wo, t)) for all t < Ty(Bas(D),w0), all zg € D

and all v, ||v]] < e.

Proof. Apply [11], Theorem 2.6, together with a standard compactness argu-
ment.

Fig. 1. lllustration of Proposition 1

Figure 1 illustrates a perturbed integral curve lying within a 26-tube around
the nominal curve from a point x¢ € D, as given by Proposition 1. When a hybrid
automaton with bounded invariant sets is designed so that when an integral
curve leaves its invariant set, it does so by some uniform minimum distance,
Proposition 1 provides an elementary robustness property for this continuous
evolution in between any two successive discrete control switches. However, even
small variations in the parameter may have the effect that a perturbed trajectory
runs into a different guard set than the corresponding nominal trajectory. In
turn, such a perturbed trajectory may switch to a different vector field and thus
may potentially stray far away from the nominal trajectory. The avoidance of
this phenomenon motivates several of the design choices in formulating a robust
solution to our target control problem.



3 Control Problem Statement

A hybrid automaton can be seen as the closed-loop feedback system resulting
from the inter-connection of a switched continuous plant and a discrete switching
controller. See [6] for a more detailed analysis of this control-theoretic content
of a hybrid automaton. For the controller synthesis problem under investigation,
the plant is given by a finite family of vector fields F.: X — R" indexed by a
control alphabet ¢ € C'. We then ask for a synthesis procedure that constructs a
closed-loop hybrid automaton H by building the missing entities that form the
switching control mechanism, namely @, F, Invg, and Grdy 4, where the reset
relation is required to be elementary; i.e.

rqq = test.Grdg o def {(z,2)e X xX |2 €Grdyy and 2’ =z }. (7)

As @ is not known in advance, the synthesis procedure also needs to allocate a
particular control ¢ € C' (indexing a vector field) to each discrete mode ¢ € Q.

The control goal is to satisfy the following closed-loop performance specifi-
cations.

(S1) Safety: given a proscribed set Bad C X, construct a set Good C X — Bad
with the property that every H-trajectory starting in Good always remains
outside Bad.

(S2) Event sequence behaviour with d-overlaps: given a finite partition { E } ek
of X — Bad, a relation next C K x K, and a metric parameter § > 0,
let Ay = Bjs(E)) be the d-expansion of the partition block Ej, for each
k € K; the requirement is that for every full H-trajectory starting in Good,
whenever it enters one of the sets Ay, it remains there until it crosses into
Ay — Ay, for some k' € next(k).

(S3) Liveness I: every full H-trajectory starting in Good shall be step-infinite.

(S4) Liveness II: every full H-trajectory starting in Good shall be time-infinite.

The specification (S1) is the classic form of a safety property, while (S3) and
(S4) are, respectively, the non-blocking and the non-Zeno forms of liveness prop-
erties. The specification (S2) prescribes an order of traversal through the J-
expanded partition blocks. Formally, switches from one such block to another
are identified as events from the finite alphabet K and (S2) requires the closed-
loop to generate a sublanguage of {(k;)ier | Vi < sup(I) : ki+1 € next(k;)}. The
metric tolerance ¢ ensures that the event sequence specification refers to over-
lapping regions Ay N Ay rather than the common boundaries bd(E}) N bd(Ey)
of partition blocks. In particular, the overlaps are full dimensional and allow for
some “wiggle room” which is essential for our robustness results. A more detailed
motivation of (S2) is given in [6].
Our synthesis procedure is subject to the following further assumptions.
(A1) The set X — Bad is compact (with respect to the standard Euclidean
topology).
(A2) The map next C K x K is total, so for each k € K, there is at least one
k' € next(k).
(A3) For all k,k’ € K such that k"% k’, the partition blocks Ej and Ej are
contiguous in the sense that bd(Ey) Nbd(Ey ) # <.



(A4) For each k € K, the block Ej, has a non-empty §-contraction; i.e. the set
{z € X | Bs(z) C Ej} is non-empty.

(A5) For all k, k', k" € K such that k™% k' "% k" the infimum of the metric
distance between points in the set bd(Ex) N bd(E}) ) and points in the set
bd(Ek/) N bd(Ek//) is at least 30.

By (A1), the relevant portion of the state space is required to be compact;
this is used in applying Proposition 1 and in proving finite termination of our
algorithm. Assumptions (A2), (A3) and (A4) are non-triviality conditions. The
assumption (A5) gives a foundation for non-Zeno-ness by ensuring that closed-
loop trajectories must traverse some minimum spatial distance when fulfilling
the event sequence specification.

4 Modal Logics for Hybrid Systems

This section sets out only the bare details of modal logics and their application
to hybrid systems. For a more substantial account, the reader is referred to [7]
and also to [6]. The handbook chapter [18] gives a broader introduction to the
family of modal and temporal logics.

A modal signature is a pair (Rel, Prp), where Rel is an alphabet of atomic re-
lation labels, and Prp is an alphabet of atomic propositions. The set £(Rel, Prp)
of modal formulas ¢ of signature (Rel, Prp) is generated by the grammar:

p = ploeleVer|(a)e (3)
where p € Prp and a € Rel. The other Boolean connectives are definable, e.g.
01 Ay =(mp1 V ma), o1 — 2 def (m¢1 V ¢2), as are the dual modal

operators: [a]p < —(a)—e.

The formal semantics of modal (and temporal) logics are given with respect to
labeled transition systems, also called LTS models or generalized Kripke models.
An LTS model of signature (Rel, Prp) is a structure:

M = (S, {a™ Yaerer, {[P]™ }perrp) - 9)

where: S # @ is the state space, of arbitrary cardinality; for each a € Rel,
a™ C S x S is a relation; and for each p € Prp, [p]™ C S is a subset of
states. For formulas ¢ € L(Rel, Prp), the denotation set [o]™ C S is defined
by induction, starting with the sets [p]™ denoting atomic propositions p € Prp.
For compound formulas:

[~e]™ 5 — []™, (10)
[(a)e]™ % Pre?(a™) ([¢]™) fora € Rel, (11)
L1 Voo™ % [ [ U [epa] ™ (12)

where the existential pre-image operator Pre?(r) : P(S) — P(S) of a relation
rCS xS is:

Pre?(r)(A) ¥ {ze S| @yeS)|z >y AyeAl. (13)



For formulas ¢ € L(Rel, Prp) and models 9 of signature (Rel, Prp), we say: ¢
is satisfied at state s in 9, written M, s F ¢, if s € [¢]™; and ¢ is true in
M, or M satisfies p, written M E ¢, if [¢]™ = S.

In encoding the control problem and input data in modal logic, we work in
an LTS model My over the plant state space S := X C R”™. The set of atomic
proposition symbols is Prp, = {Bad} U {Ey | k € K}, with the self-evident
denotation sets. The alphabet Rely of relation symbols will grow dynamically
in the course of the synthesis algorithm (but will still be finite, due to finite
termination). The relation symbols divide into four sorts, which we indicate by
consistently using the same letters, adorned with subscripts and superscripts
when needed. We will have relation symbols e for evolution relations and f for
flow (or orbit) relations; symbols r for reset relations; and symbols & for metric
tolerance relations.

Definition 5. Given a flow @ : X x Rt — X (possibly a partial function) and
any set A C X CR"™, define a relation e(A,®) C X x X of evolution along &
restricted within A, by:

e U W (e RY) 2 = D, t) A (Vs € [0,8]) Bla,s) € A].  (14)
The unrestricted orbit relation f(®) C X x X is the special case: f(P) = e(X, D).

This precisely captures the notion of a hybrid trajectory segment, taking
A = Inv, and @ = @, for each control mode ¢ € Q. For e = ¢(A, ), a
formula (e)¢ denotes the subset of states in A from which there is a curve along
@ that reaches some p-state, and stays within A at all intermediate points; this
is the standard notion of backwards reachability extensively used in the hybrid
systems literature. The dual [e] operator expresses invariance, since [e]y denotes
the set of points all of whose e-successors are ¢-states. The compound AAlel(e)p
denotes the set of states in A all of whose e-successors have a further e-successor
which satisfies ¢, and so captures the notion of inevitably reaching a (-state.
This compound construct is an essential ingredient of our synthesis algorithm,
where in addressing the event sequence requirement (S2), we need to identify
states that are inevitably driven to certain local goal regions. Figure 2 illustrates
the difference between the inevitability formula A A [e](e)G and the backwards
reachability formula (e)G, where G denotes a local goal.

The reset relations under study are elementary, so (rq,4 )™ = test.Grd,., .
In this case, the modal operators (rq ) and [rq ] can be eliminated:

(rgq)p < (Grdgy Ag) and [rgqle < (Grdgy — ¢) . (15)

For metric tolerance relations 8™ = Bj;, a formula (§)¢ denotes the §-
expansion of the set of ¢-states, since Bs(A) = Pre”(Bj)(A). The dual box
formula [0]¢ denotes the d-contraction of the set of ¢-states, meaning the set of
points in [¢ ™ around which one can fit a é-ball wholly inside [ ]™%.

An axiomatic Hilbert-style proof system capturing basic properties of the
modal operators of evolution, flow and metric tolerance relations is given in
[6], Section 5. These axioms also may form a basis for employing automated
reasoning tools, e.g. tableaux proof systems [9].



Fig. 2. Denotation of inevitability and backwards reachability formulas

5 Abstract Algorithm of Synthesis Procedure

Our solution to the control problem consists of two parts. First, we strate-
gically construct a finite number of subsets of X, defined in terms of the input
data F., Bad, Fy, next and ¢. Formally, this construction is given as an ab-
stract algorithm where the sets of states are defined by modal logic formulas.
The algorithm is a fine-tuned variation of the one presented in [6]. In particu-
lar, the proof of finite termination as given in [6] carries over without change.
The algorithm may either terminate with failure or indicating success. In the
former case it produces some diagnostic output, as described below. In the case
of successful termination, the second part of our solution procedure uses the
constructed sets of states to assemble our nominal closed-loop hybrid automa-
ton H and the set Good. The pair (H, Good) then is guaranteed to fulfill the
performance specifications (S1)-(S4). It is in this second part that the present
work departs essentially from [6] and extends the scope of our method to the
plant parameter variation class H*.

The first part of our procedure is given in Algorithm 1; see [6] for a more
detailed exposition including graphical output for a nontrivial example. Given
the page constraints on this short paper, we are restricted to a brief discussion
of the individual steps of the algorithm. We begin by taking the given metric
parameter 0 and decomposing it as a sum § = 267 + 202, with 6 > do > 0.
Roughly speaking, §; is used as “wiggle room” in order to cope with parameter
variations in the vector fields, while d5 gives some extra allowance required for
an implementation based on approximated evaluation of the modal operators.
In the initialisation phase, the formula Danger; denotes the states that are
dangerous from the viewpoint of the block Ej: the outright Bad states and the
relative bad states in blocks E} with &’ not nezt-related to k. The formula
AECO,% denotes Ay, the initial -expansion of Ej. The formula Goalgc% denotes
the states that are well inside Ej, in the (§ — d3)-contraction of Fy/, for some
k' € next(k).

The main routine consists of an outer j-iteration which runs the core routine
for successive j and each k € K. The purpose of the core routine is to identify
states in Ag% that can be safely driven into the Goal,(i ). The iteration in i is



Algorithm 1 Abstract algorithm for computing sets for synthesis procedure

1
2
3

4:
5:

6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27

28
29

30:

31

32:
33:
34:
35:
36:

. % INITIALISATION %

:j:=0and¢:=0

: FOR ALL k € K DO
Danger, * (61) Bad V Vg pearmoir) Ev Ay ¥ O E:
Goall) & V) 6805 Drop? % AL A Goall)

: % MAIN-ROUTINE %
: REPEAT % FOR j=0,1,... %
% CORE-ROUTINE(k, 5) for k € K %
FOR ALL k € K DO
REPEAT % FOR:i=0,1,... %
FOR ALL c€ C DO
(e) )"0 4 e([A]™0, @)

k,i,c

Suregzyc &of Agz A [egzc] —Danger,,
Success), AL 1 6] el? ) (A) A Gonl) 1 {£)~61)AL
Finegj;;C def Sure,(j;l’c A Successlgf;zyc

Goal}j}_H def Goalgg V (Veeo [261 + 82] Fine](j;z’c)

ADL, Y AP A (261 4 82) Goal (),

i:=1+1

UNTIL Do £ -[62] (Goal) A ~Goal{!)_))
last(k,j) =i—1
% j-th ATTEMPT AT neaxt COMPATIBILITY %
FOR ALL k € K DO
Pick;! 4! Vivenert(ey ( Al(co()) A Goalz(j),zaszw,j) )
Dropgﬂ) def Drop](cj) A= (02) (Drop](cj) A ﬂPickg))
AP AL Goall? 4 Droplty
j=j+landi:=0
: UNTIL 9o £ Acx (Dropy ™" — Pick{ ")

: % FINAL CLEAN-UP %
. IF [Drop! V]™ =& for some k € K THEN

terminate & report incompatibility between k and its next-successors

. ELSE
final :=j5—1
FOR ALL k€ K and i € I, ¥ {0, - - | last(k, final)} and ¢ € C DO
Ay def A,(C{Z"al) (eg,ic)™0 def (eé{fzal))m“
Goali; % Goal/"* Fine i  Fine{//"""

terminate with success




with respect to the number of control switches required to achieve this local
goal. In the iteration, Goalgcz accumulates the states that can be driven to the
initial Goalgc)o by at most ¢ switches, while A,(C Z 41 denotes states which have
been not resolved so far. The formula FlnegC 7) identifies the states in A,(C 9 which
can be driven to Goalgjz using control ¢, and done so safely by being kept out
of Danger,,. Note that the recursive definition of Aéz 41 in line 17 involves the
terms Ag Z and Goal,(c{ Z within the scope of an odd number of negations. Thus it
cannot be coded as a p-calculus formula, and in particular the inner i-iteration
is essentially different from fixed point iterations of maximal invariant sets as
used in game-theoretic approaches to safety problems for hybrid systems [19].

While the core routine works on solving the problem locally, within the in-
dividual Ag, the outer j-loop checks that these local solutions can be merged
to form a global controller. Within each Ay, the region where the local solu-
tion finally “drops-off” states is denoted by Drop( The region where such
states can be “picked-up” by adjacent local solutions is identified by Ple(J ). ; for
compatibility between local solutions, Pickg ) is required to contain Drop,c .
If this is not the case, local goals are suitably reduced.

Suppose Algorithm 1 terminates with success. Then, the nominal closed-loop
system H and initial states Good are defined as:

e Q:={(kyi,c) € KxNxC |i€Iand [Finey; ]™ # @ }
® Flpic) = F, forall (ki c) €@
e for each ¢ = (k,i,¢) € Q, set
Invg := [(61) Ak, ]™° Nint([-(61) (A, A Goaly,;)]™)
o E:={((k,i,0),(K,7,c) € QxQ | k' € next(k) or (kK'=4k and i <)}
e for each (q,¢') = ((k,i,¢), (k',i',c")) € F set
Grdyq = Inv, N [(281) (A A Goaly ;) A Finegs i oo™
o g =test.Grdg .
o Good = U(k,i7c)eQ(Inv(k7i,C) N [[Finekﬁiycﬂim")

6 Correctness and Robustness of Synthesis Procedure

Theorem 1. Let FY : X — R*, ce€ C, v € V C R™ be a finite family of
parameter dependent vector fields, where the nominal case is denoted by F, = F2,
¢ € C. For given specification data Bad C X, {Ej}trer, next C K x K and
6 > 0, subject to assumptions (A0)—(AB), suppose Algorithm 1 terminates with
success, and H is the nominal closed-loop hybrid automaton as above. Then there
ezists a parameter bound € > 0 such that for every HV in the variation class H®,
the pair (HY, Good) satisfies each of the performance specifications (S1)—(S4).

The proof of Theorem 1 follows the same general line of argumentation as in
[6]. In this outline, we focus on the extra challenges of the variation class H¢.

We begin by choosing a variation bound e > 0 such that perturbed integral
curves must remain within a d;-tube around the nominal curve. This is done by
applying Proposition 1 for each ¢ = (k, i, c) € Q, with D = cl([Fine, AInv,]™%)



and a metric tolerance of %(51. From the construction of Success, (see Alg. 1,
line 14) we conclude that any nominal curve starting in Fine, leaves (61) A ;
via A ; A Goaly ;. Then, by the definition of Inv,, each nominal curve starting
in D leaves By, (D). The requirements of Proposition 1 are fulfilled and we get a
variation bound £(g) > 0 dependent on ¢q. We choose € := min{e(q) | ¢ € Q} as
a witness of the bound claimed by Theorem 1. In what follows, fix an arbitrary
HY € 'H®.

The high level strategy is to identify a list of modal logic formulas whose
truth in 9 provides sufficient conditions for the specifications (S1)—(S4) to be
satisfied by any HY in H¢. The crucial modal formulas (T1)—(T4) are analogs
of those in [6], and are required for each q = (k,i,¢) € Q, (¢,q") € E and for the

perturbed flow relations ey := e(Invg, @), for g € Q.

(T1) (Inv,AFine,) — [e}](d:)Fine,
(T2) (Inv,AFine,) — [test.Grd,,]Finey
(T3) (Inv,AFine,) — [e!](el) (\/q,eE(q) Grd, )

(T4) (Inv,AFine;) — (fV)-Inv,
In [6], the corresponding formulas are derived directly from the statement of
the algorithm together with the explicit assumptions. Here, we are proving cor-
rectness of a variant HV and therefore need to exploit the relationship between
the perturbed modal operators and their nominal counterparts in which the
algorithm is formalised; that is, (ey) and its relationship to (e).
From Proposition 1 and our choice of £, we can derive the following relational
inclusion:
test.Inv, o test.Finegoey C eqo0 Bs, , (16)

where o is relational composition, which we write in left-to-right word order.
This in turn implies the truth in 9 of the formula:

(Invg A Fineg A eg][81] @) —  [egle (17)
for any ¢ € L(Relg, Prpy). Then, (T1) can be deduced from Fine, — [e,|Fine,
(see [6], Lemma 7.2) together with formula (17), while (T2) is an immediate
consequence of the definitions. Formulas (T1) and (T2) are used to establish
the safety specification.

From Proposition 1 and assumption (A0), we can derive the more sophisti-
cated modal fact:
(Inv, AFine,) — ([e}](e}) (28:) Goal, A (fY)—Inv,). (18)
Formula (18) expresses the essential properties of the construct Success, (Alg. 1,
line 14) but now referring to the perturbed relations ey rather than the nominal
eq. In particular, we use (18) to deduce (T3), and (T4) is an immediate con-
sequence. Formulas (T3) and (T4) are used to verify step-infinite liveness and
the event sequence specification.



Having deduced the modal conditions (T1)—(T4), from this point on, we
can largely mimic the proof in [6] to establish that H” and Good satisfy each of
the specifications (S1)—(S4).

7 Discussion and Conclusion

This paper addresses a basic hybrid control problem, namely the design of
a switching control mechanism via guard and invariant sets. We use a novel
methodology based on modal logic to solve this problem for a significant list
of performance specifications, and we do so in a manner that is robust w.r.t.
parameter uncertainty in the differential equations.

A significant issue to be investigated in future work is the question of com-
pleteness of the algorithm; i.e. whether there exists a parameterised plant and
specification data such that there is a robust solution to the control problem
but the algorithm terminates with failure due to next incompatibility. In gen-
eral one may expect such incompleteness to occur. So the question arises as to
what additional conditions on the input data could ensure completeness. A full
treatment of this issue necessitates the development of more mathematical tools
for analysing the space of all possible solutions to our control problem, leading
to an appropriate notion of switching controllability.

As discussed in the introduction, our synthesis algorithm can be implemented
on any available model checking tool. There are two main approaches: ezact
symbolic computation, representing sets of states by first-order logic formulas
(e.g. [1,2,14,15]), and approzimated representation, whereby sets are under- or
over-approximated as finite unions of cells (e.g. [4,13,16]). We have developed
a prototype software implementation of our synthesis algorithm based on an
approximation using boxes generated by a regular grid, and it is applicable to
arbitrary linear differential equations. The software runs on a massively parallel
cluster effectively employing 96 CPUs, and has been tested on several non-trivial
examples. This work on approximation based model checking is to be presented
in a separate paper.
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