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Abstract. Abstraction based approaches to hybrid control systems synthesis have
so far been mostly limited to problems with low-order linear continuous dynamics.
In this paper, results from the theory of monotone dynamical systems are used to
efficiently compute discrete abstractions for a class of nonlinear models. Further-
more, a situation is investigated where the high-dimensional plant state converges
to a low-dimensional manifold; in the proposed approach the computational effort
is governed by the dimension of the low-order manifold without neglecting the high-
order dynamics. Results are applied to synthesize a discrete event controller for the
automatic start-up of a nonlinear distillation column model of order 42.

1 Introduction

The control of a physical, biological or chemical process by a digital com-
puter program often leads to heterogeneous systems that include both con-
tinuous and discrete event dynamics. Such systems are referred to as hy-
brid control systems and, in general, exhibit highly complex behaviours.
From an engineering perspective, the systematic design of hybrid systems
to meet given performance specifications is of particular interest; e.g. [1–
3,10,12,13,38]. When investigating suitable methodologies for particular de-
sign objectives and system classes, the development of synthesis procedures
that are both efficient and reliable represents a major challenge. The demand
for reliability results from safety critical applications, such as air traffic con-
trol or the control of chemical processes. As it is only for extremely restrictive
conditions that hybrid controller synthesis problems can be solved directly
on the basis of a hybrid plant model, a common approach is to resort to ap-
proximation based methods; e.g. [2,10–12,18,23,32]. In this context, reliability
becomes a nontrivial issue: does a controller which has been synthesized for
a particular approximation also achieve the design objectives for the original
problem? Roughly speaking, an affirmative answer can be given under the
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condition that the approximation accounts for all signals on which the orig-
inal plant can possibly evolve. An approximation that exhibits this crucial
behavioural inclusion property is referred to as an abstraction.

This paper specifically addresses the synthesis of discrete event controllers
for continuous plants with discrete external signals. For this class of synthesis
problems we have developed an abstraction scheme of particular convenience,
namely l-complete approximation. While for all parameter values l ∈ N0 the
behavioural inclusion property is fulfilled, it can be seen that increasing l cor-
responds to improving the approximation accuracy. The latter is an essential
feature as it allows to systematically adjust the approximation accuracy to the
application at hand. By construction, any l-complete approximation can be
realized by a finite automaton. Hence, the hybrid synthesis problem is trans-
formed into a purely discrete problem, which can subsequently be solved using
methods from DES theory. Some further detail on l-complete approximation
in the context of supervisory controller synthesis is given in Section 2; for a self
contained development of the topic the reader is referred to [18,22,32]. Our
work on abstraction based supervisory control and related topics in hybrid
control theory was partly funded by Deutsche Forschungsgemeinschaft under
the KONDISK-scheme (research grants Ra 516/3-1, Fr 598/6-1, Fr 598/6-2,
and Fr 598/6-3). This support is gratefully acknowledged. Beside our core
contribution to abstraction based supervisory control [11,14,15,18,21,22,24–
26,31,32], we have also addressed hierarchical [20,27–29] and modular [16,19]
extensions to our approach. We have discussed computational procedures for
linear dynamics under time-driven and event-driven sampling [4,17,31] and
applied our results in a number of case studies [6–9,30].

In principle, the computational procedure to generate l-complete approx-
imations is straightforward. There are, however, two major problems that
have limited applications to a class of plant models that appears small when
compared to the generality of the theoretical framework provided by [18]:
(i) quantization cells have to be tracked under the progress of time and in-
tersected with other quantization cells. Clearly, this is a difficult problem
if the right hand side of the differential or difference equation is nonlinear
in the continuous state variable. (ii) Computational effort “explodes” with
growing state dimension. Hence, applications have been restricted to fairly
low-dimensional plant models. From a more general perspective, both limita-
tions are closely related to the absence of efficient procedures for high-order
and/or nonlinear reachability analysis and, in principle, also apply to other
approximation based synthesis methods. In this contribution, we derive con-
ditions for high order nonlinear systems that allow efficient computation of
l-complete approximations without sacrificing reliability in the subsequent
controller design.

The paper is organized as follows: in Section 2, we briefly summarize
the considered controller synthesis problem and the basic procedure for l-
complete approximation. In Section 3, we introduce the notion of monotone
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dynamical systems and show why it is extremely helpful for computing dis-
crete abstractions for a certain class of nonlinear systems. In Section 4, we
explore a situation that allows treatment of high-dimensional systems. Fi-
nally, in Section 5, we apply our results to synthesize a DES controller for
the start-up of a distillation column that is described by a nonlinear model
of order 42.

2 Abstraction based supervisory control

In our earlier work [18,22,31,32], we combine techniques from J.C. Willems’
behavioural systems theory [36,37] and P.J. Ramadge and W.M. Won-

ham’s supervisory control theory [33,34] to address the problem of supervi-
sory controller synthesis for a fairly general class of hybrid systems and to
establish an abstraction based solution procedure. The purpose of this section
is to briefly summarize the consequences of [18,22] for the more specific case
of sampled continuous systems with discrete-valued inputs and outputs; it is
this class of plants that we will develop efficient abstraction procedures for in
the following sections. While we need to provide an unambiguous framework
for the abstraction step, technical aspects of the controller synthesis step are
omitted and only an informal outline is given. For a detailed discussion, the
reader is referred to [18,22].

Plant model. Consider the plant

x(k + 1) = F (x(k), u(k)) and y(k) ∈ G(x(k)) , (1)

where

• the input signal u : N0 → U is a sequence of input symbols from the finite
input alphabet U , |U | ∈ N; 1

• the state trajectory x : N0 → R
n is a sequence of real-valued states;

• the state transition map F : R
n × U → R

n uniquely determines the suc-
cessor state from the current state and the current input symbol;

• the measurement map G : R
n → 2Y \ {∅} models a quantized measure-

ment of the continuous state; it is not required to be deterministic.
• the output signal y : N0 → Y is a sequence of measurement symbols from

the finite output alphabet Y , |Y | ∈ N.

This class of plant models includes a scenario of particular application rel-
evance, namely sampled continuous dynamics with a discrete-valued input
switching between a finite number of operation modes and a discrete-valued
output being generated by measurement quantisation. Assuming a constant
sampling period ∆ > 0, the state transition map is given by

F (ξ, µ) := Φµ
∆(ξ) , (2)

1 We denote the positive integers N and the non-negative integers N0. We use
|A| ∈ N to indicate that A is a nonempty finite set.
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where for each µ ∈ U the map Φµ
t : R

n → R
n, t ∈ R

+
0 , denotes the flow

induced by a vector field fµ : R
n → R

n; i.e. z(t) = Φµ
t (z0) solves the ODE

ż(t) = fµ(z(t)) (3)

for the initial condition z(0) = z0, and we assume unique existence of such
a solution on the entire time axis. Note that if we were concerned with the
system behaviour between given sampling instants, we could adopt our set-
up to the case of event-driven sampling. In the latter case, the occurrence
of events is entirely determined by the system (e.g., by elements of the con-
tinuous state vector z crossing certain thresholds) instead of being restricted
to a fixed time grid. For linear dynamics, this case has been addressed in
[4,14,17].

By allowing the measurement map G to be nondeterministic, the quan-
tization cells G−1(νj) ⊆ R

n, νj ∈ Y , j = 1, . . . |Y |, may cover (instead of
partition) the continuous state space. This models the practically important
case where measurement information is, to a certain extent, ambiguous.

Supervisory control. From the perspective of a potential controller, the
system exhibits a discrete event behaviour: at the k-th sampling instant, the
supervisor applies an input symbol u(k) ∈ U and then waits for the next
measurement symbol y(k + 1) ∈ Y . Naturally, for the problem of controller
synthesis, this external behaviour plays a key role. We formally define the
external behaviour B induced by (1) as

B := {(u, y) : N0 → U × Y |

∃x : N0 → R
n : Eq. (1) holds for all k ∈ N0 } ; (4)

i.e. B denotes the set of all pairs of input and output signals on which the
plant model (1) can possibly evolve. This definition is consistent with J.C.

Willems’ behavioural systems theory, where a dynamical system is charac-
terized by the set of trajectories that are compatible with the phenomenon
it models.

Following the concepts of Ramadge and Wonham’s supervisory control
theory for DESs, the task of a supervisor is to restrict the plant behaviour
B ⊆ (U × Y )N0 such that the closed loop is guaranteed to exhibit only
acceptable signals. This specification can be formally represented by the set
of acceptable external signals, denoted Bspec ⊆ (U × Y )N0 . Similar to the
plant, the supervisor is characterized by a behaviour Bsup ⊆ (U × Y )N0 ,
which denotes the set of external signals it can evolve on. The closed-loop
behaviour is the intersection Bcl = B ∩ Bsup, i.e. only those pairs of input
and output signals “survive closing the loop” that are consistent with both
plant and controller dynamics. The supervisor Bsup is said to enforce the
specification Bspec if Bcl ⊆ Bspec. However, when interconnecting plant and
supervisor one needs to ensure that the supervisor respects the input-output
structure of the plant; i.e. the supervisor may enable or disable certain input
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events at any time but no restrictions must be imposed on the plant outputs.
If the latter condition holds, Bsup is said to be admissible w.r.t. B; see [18]
for a formal definition of admissibility. The problem of supervisory controller
synthesis can then be stated as follows:

Given a plant behaviour B and a specification Bspec, a supervisor Bsup is
said to be a solution to the supervisory control problem (B, Bspec) if (i) Bsup

is admissible w.r.t. B, and (ii) Bsup enforces the specification.

Discrete abstractions. Suppose both B and Bspec were realized by finite
automata. Not surprisingly, the controller synthesis problem could then be
treated by a slightly modified version of known methods from DES theory;
e.g. [34]. For this case, efficient procedures are known which either compute a
finite automaton realization of a solution Bsup or find that no such solution
exists. However, the plant (1) is defined on the continuous state space R

n, and
a finite automaton realization of B can only exist if R

n can be decomposed
by a finite partition into sets of states that are indistinguishable under all
external signals. This is a very restrictive condition and, in general, we can not
assume that B is realizable by a finite automaton. A method to overcome this
problem is to first construct a finite automaton that approximates the hybrid
plant and then to solve the synthesis problem for the approximation. Various
variants of this approach have been discussed, e.g., in [2,10,12,23,31,32]. In
[18,22], we justify this approximation based approach by providing a sufficient
condition for a solution obtained at the approximation level to remain valid
for the actual hybrid plant:

Consider a plant approximation Bca ⊆ (U × Y )N0 , a specification Bspec,
and a solution Bsup of the supervisory control problem (Bca, Bspec). Assume
that each behaviour Bca, Bspec, Bsup is realized by a finite automaton. If
Bca ⊇ B, then Bsup also solves (B, Bspec), where B denotes the external
behaviour of the plant model (1). See [18], Theorem 25, and [22], Section 6.

Note that the nontriviality of this result is due to the requirement that
any solution Bsup respects the input output structure of B. A plant approx-
imation Bca is said to be a discrete abstraction of B, if (i) the behavioural
inclusion Bca ⊇ B is fulfilled, and (ii) Bca is realizable by a finite automaton.
The supervisory controller synthesis problem has thus been reduced to the
construction of a discrete abstraction Bca ⊇ B that is sufficiently accurate
such that (Bca, Bspec) is solvable.

l-Complete approximation. In the case of time invariant systems, a par-
ticularly suitable discrete abstraction is the so called strongest l-complete
approximation Bl ⊇ B, where l ∈ N is a parameter. Formally, Bl can be
characterized by

Bl := {(u, y) : N0 → U × Y | (u, y)
∣

∣

[k,k+l]
∈ B

∣

∣

[0,l]
∀ k ∈ N0} , (5)
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where the restriction operator ( · )|[k,k+l] : (U × Y )N0 → (U × Y )(l+1) picks
the finite string ranging from the k-th to the (k+ l)-th pair of external events
and discards its absolute location on the time axis:

(u, y)|[k,k+l] := [ (u(k), y(k)), . . . (u(k + l), y(k + l)) ] ∈ (U × Y )(l+1) . (6)

It can be naturally extended to sets of signals:

B|[0,l] := {(u, y)
∣

∣

[0,l]
∈ (U × Y )(l+1) | (u, y) ∈ B} . (7)

Note that B|[0,l] is a finite set as both U and Y are finite. The most relevant
features of the strongest l-complete approximation Bl are that (i) accuracy
is monotone in l, i.e. Bl ⊇ Bl+1 ⊇ B, and that (ii) a finite realization
can be easily derived from the restricted plant behaviour B|[0,l]; see [18],
Corollary 11. Hence, there is no need to evaluate Eq. (5) in order to construct
Bl. All that remains to be done is the computation of B|[0,l] and we recall
the following iterative procedure from [18]:

Theorem 1. Let B ⊆ (U × Y )N0 denote the external behaviour of (1).
For (u, y) ∈ (U × Y )N0 and l ∈ N0, iteratively define the sets of states
X ((u, y)|[0,l]) ⊆ R

n that are compatible with the strings (u, y)|[0,l]:

X ((u, y)
∣

∣

[0,0]
) := G−1(y(0)) , (8a)

X ((u, y)
∣

∣

[0,λ+1]
) := F (X ((u, y)

∣

∣

[0,λ]
), u(λ)) ∩ G−1(y(λ + 1)) , (8b)

for λ = 0, . . . l − 1. Then,

(u, y)
∣

∣

[0,l]
∈ B

∣

∣

[0,l]
⇐⇒ X ((u, y)|[0,l]) 6= ∅ . (9)

According to the above theorem, B|[0,l] can be established via a finite
iteration of images under F and intersections with the quantization cells G−1.
Then, the methods presented in [18,22] allow the construction of a discrete
abstraction of the hybrid plant and finally the synthesis of a supervisory
controller.

While this approach has been successfully applied to a number of exam-
ples, there are two major limitations from a practical point of view. First, for
nonlinear continuous dynamics, images of sets of states under F can, in gen-
eral, not be computed efficiently. Roughly speaking, one is often left with the
simulation of an exhaustive number of initial conditions ξ0 = x(0); it is then
naively assumed that X ((u, y)|[0,l]) = ∅ whenever no ξ0 ∈ X ((u, y)|[0,l]) can
be found. Clearly, this implies the risk of omitting a particular string from
B|[0,l], hence from Bca = Bl, therefore violating the requirement Bca ⊇ B.
Second, for high dimensional continuous dynamics, a reasonably accurate
quantization leads to computationally intractable output alphabets Y . In
the following two sections, we identify a broad class of hybrid systems where
the above iterative procedure can be refined in order to gain substantial com-
putational efficiency.
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3 Discrete abstractions for monotone systems

For monotone dynamical systems (see [35] for a comprehensive treatment of
the subject), it is possible to efficiently estimate the sets of compatible states
X ((u, y)|[0,l]) and to derive a discrete abstraction from those estimates. In
general, monotonicity is defined with respect to an arbitrary partial order.
In this paper, we consider the specific partial order 4 which, for a, b ∈ R

n, is
defined by

a 4 b :⇐⇒ ∀ i ∈ {1, . . . n} : ai ≤ bi. (10)

Hence, a 4 b if and only if b − a lies in the nonnegative convex cone R
n
+ :=

{ξ ∈ R|ξ ≥ 0}n.

Definition 1. The map g : R
q → R

n is called order preserving if a 4 b
implies g(a) 4 g(b).

Note that a map is order preserving if all its partial derivatives are nonneg-
ative. The image of a box

Q(a, b) := {c| a 4 c 4 b} (11)

under an order preserving map g can be efficiently over-approximated via
the images of a and b, i.e. g(Q(a, b)) ⊆ Q(g(a), g(b)). It is this property that
allows efficient approximation of monotone systems.

In the following, we consider dynamical systems

ż(t) = f(z(t)) (12)

and assume that, for any initial condition z(0) = z0, there exists a unique
solution Φt(z0) for all t ≥ 0. The dynamical system (12) is called monotone,
if ordered states remain ordered under the progress of time:

Definition 2. The dynamical system (12) is monotone, if the flow Φt : R
n →

R
n induced by the vector field f : R

n → R
n is order preserving for all t ≥ 0.

A monotonicity test can be stated in terms of the off-diagonal entries of
the Jacobian of f :

Theorem 2. (see e.g. [35]) The dynamical system ż = f(z) is monotone if

∂fi

∂zj

≥ 0 ∀i 6= j . (13)

As an example, consider a linear system ż(t) = A z(t). If all eigenvalues
of A lie in R, then there exists a real linear transformation that transforms A
in its Jordan normal form. Clearly, the transformed system is monotone by
Theorem 2. For further illustration, Figure 1 shows two state trajectories z(t)
and ẑ(t) of the monotone system ż(t) =

(

−1 1
0 −1

)

z(t). For the respective initial
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conditions z(0) = (0, −1.2)ᵀ and ẑ(0) = (0.2, −1)ᵀ we have z(0) 4 ẑ(0),
and hence, by monotonicity, z(t) 4 ẑ(t) for all t ≥ 0. This is confirmed
by Figure 1, which also clarifies that monotonicity of a dynamical system
must not be confused with monotonicity of individual components of state
trajectories: in the example, z1(t) and ẑ1(t) clearly fail to be monotonously
increasing (or decreasing) as functions of t.

0 1 2 3

-1

-0.5

0
z1(t)

ẑ2(t)

z2(t)

t-axis

ẑ1(t)
0

−1

21

−0.5

Fig. 1. State trajectories of a linear monotone system.

In consequence, for monotone systems, there is no need to integrate a
huge number of states. Instead, the temporal evolution of a box Q(ζa, ζb) can
be over-approximated by evaluating the flow for the two points ζa, ζb only:
Φt(Q(ζa, ζb)) ⊆ Q(Φt(ζa), Φt(ζb)). Clearly, this is independent of the state
dimension.

We now turn to the discrete abstraction of the hybrid plant model (1),
with sampled continuous dynamics (3). Obviously, during each sampling in-
terval, the continuous dynamics depends on a fixed control symbol µ ∈ U .
Under the assumption that the continuous system (3) is monotone for each
µ ∈ U , it immediately follows that the transition function F ( · , µ) defined
in Eq. (2) is order preserving. We further assume that measurement symbols
νj , j = 1, . . . , p, correspond to bounded boxes in R

n, i.e.

G−1(νj) = Q(aj , bj), aj , bj ∈ R
n, aj 4 bj . (14)

Obviously, a finite number of bounded boxes (14) can not cover the entire
R

n. Hence, we need an additional out of range symbol ‡ with

G−1(‡) = R
n \

⋃

1≤j≤p

G−1(νj) , to give Y = {ν1, . . . , νp} ∪ {‡} . (15)

Based on the iteration (8a), (8b), we are now in a position to provide
easily computable conservative estimates X̂ ((u, y)|[0,l]) ⊆ R

n for the sets
of compatible states. Using F̂ (Q(a, b), µ) := Q(F (a, µ), F (b, µ)) as an over-
approximation of the continuous evolution of a box Q(a, b) under the order
preserving flow Φµ

∆, we define:
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• if y(0) = νj 6= ‡ for some j, let

X̂ ((u, y)
∣

∣

[0,0]
) := G−1(νj) ; (16)

• if y(0) = ‡, let

X̂ ((u, y)
∣

∣

[0,0]
) := R

n . (17)

And, for λ = 0, . . . l − 1:

• if y(λ + 1) 6= ‡ and X̂ ((u, y)
∣

∣

[0,λ]
) 6= R

n, let

X̂ ((u, y)
∣

∣

[0,λ+1]
) := F̂ (X̂ ((u, y)

∣

∣

[0,λ]
), u(λ)) ∩ G−1(y(λ + 1)) ; (18)

• if y(λ + 1) 6= ‡ and X̂ ((u, y)
∣

∣

[0,λ]
) = R

n, let

X̂ ((u, y)
∣

∣

[0,λ+1]
) := G−1(y(λ + 1)) ; (19)

• if y(λ + 1) = ‡ and X̂ ((u, y)
∣

∣

[0,λ]
) 6= R

n

and F̂ (X̂ ((u, y)
∣

∣

[0,λ]
), u(λ)) 6⊆ ∪1≤j≤pG−1(νj), let

X̂ ((u, y)
∣

∣

[0,λ+1]
) := F̂ (X̂ ((u, y)

∣

∣

[0,λ]
), u(λ)) ; (20)

• if y(λ + 1) = ‡ and X̂ ((u, y)
∣

∣

[0,λ]
) 6= R

n

and F̂ (X̂ ((u, y)
∣

∣

[0,λ]
), u(λ)) ⊆ ∪1≤j≤pG−1(νj), let

X̂ ((u, y)
∣

∣

[0,λ+1]
) := ∅ ; (21)

• if y(λ + 1) = ‡ and X̂ ((u, y)
∣

∣

[0,λ]
) = R

n, let

X̂ ((u, y)
∣

∣

[0,λ+1]
) := R

n . (22)

Note that (16)–(22) iteratively define the sets X̂ ((u, y)|[0,l]) for all external

signals (u, y) ∈ (U × Y )N0 and for all l ∈ N0: Eqs. (16) and (17) define
X̂ ((u, y)|[0,0]) while Eqs. (18)–(22) systematically define X̂ ((u, y)|[0,λ+1]) in

terms of X̂ ((u, y)|[0,λ]). Note also that F̂ is only applied to bounded boxes.

By construction, the sets X̂ ((u, y)|[0,l]) are guaranteed to be supersets of the
sets of compatible states X ((u, y)|[0,l]). Formally:

Proposition 1. Assume that for each µ ∈ U the state transition map F ( · , µ)
is order preserving and the output map G is defined by (14)–(15). Then, for
all external signals (u, y) ∈ (U × Y )N0 and for all l ∈ N0 the following inclu-
sion holds:

X̂ ((u, y)
∣

∣

[0,l]
) ⊇ X ((u, y)

∣

∣

[0,l]
) . (23)
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Proof. Pick an arbitrary external signal (u, y) ∈ (U × Y )N0 . For l = 0 the
claim follows immediately from (16) and (17). For l 6= 0, the proof is by induc-
tion w.r.t. λ = 0, . . . l−1: we assume X̂ ((u, y)|[0,λ]) ⊇ X ((u, y)|[0,λ]) and show

in each of the cases corresponding to Eqs. (18)–(22) that X̂ ((u, y)|[0,λ+1]) ⊇
X ((u, y)|[0,λ+1]). First, observe that for the cases (19) and (22) the inclusion

X̂ ((u, y)|[0,λ+1]) ⊇ X ((u, y)|[0,λ+1]) follows immediately. For the remaining

cases, note that, by monotonicity, F̂ (Q(a, b), µ) ⊇ F (Q(a, b), µ) holds for any
a, b ∈ R

n, µ ∈ U . Hence, F̂ (X̂ ((u, y)|[0,λ], u(λ)) ⊇ F (X ((u, y)|[0,λ], u(λ)).

For the case (18) one obtains X̂ ((u, y)|[0,λ+1]) ⊇ F (X ((u, y)|[0,λ]), u(λ)) ∩
G−1(y(λ+1)) = X ((u, y)|[0,λ+1]). The same argument resolves case (20). Only

case (21) remains. From condition F̂ (X̂ ((u, y)|[0,λ]), u(λ)) ⊆ ∪1≤j≤pG−1(νj)
one obtaines F (X ((u, y)|[0,λ]), u(λ)) ⊆ ∪1≤j≤pG−1(νj). Together with (15),
this implies F (X ((u, y)|[0,λ]), u(λ))∩G−1(‡) = ∅, and, hence, X ((u, y)|[0,λ+1])

= ∅ = X̂ ((u, y)|[0,λ+1]).

Remark: The assumption of quantization boxes instead of more general
(bounded) quantization sets does not imply any loss of generality: in the latter
case, we would simply replace G−1(. . .) by Q(inf G−1(. . .), sup G−1(. . .)) in
the above iteration (16)–(22).

As an immediate consequence of Proposition 1, we obtain a finite abstrac-
tion Bca.

Corollary 1. Under the same hypothesis as in Proposition 1, the following
inclusions hold:

B̂
∣

∣

[0,l]
:=

{

(u, y)
∣

∣

[0,l]

∣

∣ X̂ ((u, y)
∣

∣

[0,l]
) 6= ∅

}

⊇ B
∣

∣

[0,l]
, (24)

Bca := {(u, y)| (u, y)
∣

∣

[k,k+l]
∈ B̂

∣

∣

[0,l]
∀ k ∈ N0} ⊇ Bl ⊇ B . (25)

A finite realization of Bca can now be constructed in the same manner as
for Bl (see [22,18]) – we merely have to replace B

∣

∣

[0,l]
by B̂

∣

∣

[0,l]
. This com-

pletes the discrete abstraction procedure for monotone dynamical systems.
Note that we do not assume linearity; our results are therefore applicable to
nonlinear monotone dynamics.

4 Handling high-order dynamics

Many complex technical processes, although intrinsically high-dimensional,
converge to a low-dimensional manifold within a short time. Distillation
columns are a well-known example: a first principles modelling approach leads
to a large number of ODEs describing the temporal evolution of concentra-
tions on each tray of the column. When a column is operated, however, these
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concentrations stop to be arbitrary and form a concentration profile that can
be described by very few parameters.

This particular structure can be exploited in the following way: instead
of quantizing the high-dimensional plant state space, only a well defined
neighbourhood of the relevant part of the respective manifold is covered by
quantization cells and hence provides measurement information; the “rest” of
the state space returns the out of range symbol “‡”. For a formal treatment
of this idea, let

hµ : R
q → R

n, q < n, (26)

represent a continuously differentiable parametrization of a q-dimensional
manifold Mµ in R

n, i.e. Mµ = hµ(Rq). Naturally, both the manifold and
its parametrization may depend on the control symbol µ. Assume hµ to be
order preserving and Mµ to be attractive, i.e.

lim
t→∞

dist(Mµ, Φµ
t (z0)) = 0 , (27)

for all initial conditions z0 ∈ R
n, where

dist(X, ζ) := inf{‖ζ − ξ‖ | ξ ∈ X} (28)

denotes the distance of a point ζ ∈ R
n to a set X ⊆ R

n w.r.t. some norm
‖ · ‖. Let the bounded subset P ⊂ R

q represent the relevant operating range
on Mµ and, for a given δ > 0,

Vδ(hµ(P )) := {ζ | dist (hµ(P ), ζ) < δ} (29)

the neighbourhood of hµ(P ) that is to be covered by quantization cells.
We give an explicit formula for quantisation cells covering Vδ(hµ(P )) for

the case where the operators dist( · ) and Vδ( · ) refer to the so called weighted
infinity norm; i.e. ‖ · ‖ := ‖ · ‖β

∞ with ‖ξ‖β
∞ := maxi |βiξi| for the weighting

vector β = (β1, . . . βn)ᵀ. Subject to the constraints βi > 0,
∑

βi/n = 1, the
weights β may be chosen arbitrarily but are assumed to be fixed for the scope
of this paper. Note that the closure of a neighbourhood of a bounded box
w.r.t. ‖ · ‖β

∞ is again a bounded box:

Vδ(Q(a, b)) = Q(a− δβ−1, b + δβ−1) , (30)

where β−1 := (β−1
1 , . . . β−1

n )ᵀ, and Vδ(X) denotes the closure of Vδ(X). The
diameter of a box w.r.t. ‖ · ‖β

∞ is defined by

diam(Q(a, b)) := sup{‖ξ − ζ‖β
∞ | ξ, ζ ∈ Q(a, b)} = ‖a − b‖β

∞ . (31)

Given a finite a number of (q-dimensional) boxes covering P – they are
referred to as parameter cells – we define the (n-dimensional) measurement
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quantisation cells by

P ⊆
⋃

1≤j≤pµ

Q(aj , bj) =: P̂ ⊂ R
q , aj , bj ∈ R

q , (32)

G−1(νµ
j ) := Q(hµ(aj)− δβ−1, hµ(bj) + δβ−1) ⊂ R

n . (33)

This is illustrated in Fig. 2, where, for simplicity, dependence on µ has been
omitted and all βi are equal. Then, as required, the quantisation cells cover
Vδ(hµ(P )). Furthermore, referring to a Lipschitz constant of hµ, the diameter
of the parameter cells can be chosen such that the measurement quantisation
cells meet a given accuracy requirement, i.e. the measurement cells do not
exceed a given maximum diameter. Formally, this can be stated as follows:

a1 b1 a3 b3

a2 b2P

q = 1

hµ(P )

G−1(ν1)

G−1(ν2)

G−1(ν3)

n = 2

G−1(‡)

Fig. 2. Quantization of neighbourhood of hµ(P ).

Proposition 2. Given the order preserving and continuously differentiable
map hµ : R

q → R
n, let L > 0 denote a Lipschitz constant w.r.t. ‖ · ‖β

∞ for

hµ on the domain P̂ ⊂ R
q. Then diam(G−1(νµ

j )) ≤ L diam(Q(aj , bj)) + 2δ.
Let γ denote the maximum diameter of the parameter cells in the finite cover
(32). Then

Vδ+γL(hµ(P̂ )) ⊇
⋃

1≤j≤pµ

G−1(νµ
j ) ⊇ Vδ(hµ(P )) . (34)

Proof. The existence of a Lipschitz constant L is ensured by continuous dif-
ferentiability of hµ and boundedness of P̂ . As an immediate consequence, ob-
serve diam( Q(hµ(aj), hµ(bj)) ) ≤ L diam(Q(aj , bj)). By the triangle inequal-
ity, we obtain diam(G−1(νµ

j )) ≤ L diam(Q(aj , bj)) + 2δ. To show the first of

the two inclusions in Eq. (34), pick an arbitrary point ξ ∈ ∪1≤j≤pµ
G−1(νµ

j )

and an integer j such that ξ ∈ Vδ( Q(hµ(aj), hµ(bj)) ). Hence, there exists a
point ζ ∈ Q(hµ(aj), hµ(bj)) with ‖ξ−ζ‖β

∞ ≤ δ. Obviously, Q(hµ(aj), hµ(bj))
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has a nonempty intersection with hµ(P̂ ), and therefore dist(hµ(P̂ ), ζ) ≤
diam( Q(hµ(aj), hµ(bj)) ) ≤ γL. This implies dist(hµ(P ), ξ) ≤ δ+γL. Hence,
ξ ∈ Vδ+Lγ(hµ(P )), completing the proof of the first inclusion in Eq. (34).
To show the second inclusion, take any ζ ∈ Vδ(hµ(P )). Then there ex-
ists a p ∈ P , ξ := hµ(p), such that ‖ξ − ζ‖β

∞ < δ. By (32), we can find
a j such that p ∈ Q(aj , bj). As hµ is order preserving, this implies ξ =
hµ(p) ∈ Q(hµ(aj), hµ(bj)). Hence, ζ ∈ Vδ(Q(hµ(aj), hµ(bj)), and, by (30),
ζ ∈ G−1(νµ

j ). This proves the second inclusion in Eq. (34).

The part of R
n not covered by any of the cells G−1(νµ

j ), j = 1, . . . pµ,
µ ∈ U , again returns the out of range symbol ‡, i.e.

G−1(‡) := R
n \

⋃

1≤j≤pµ , µ∈U

G−1(νµ
j ) , (35)

such that the set of measurement symbols is given by

Y :=
⋃

µ∈U

{νµ
1 , . . . , νµ

pµ
} ∪ {‡} . (36)

This concludes the construction of a measurement quantization based
on lower dimensional attractive manifolds. The reduction of the number of
required quantization cells is quite significant. If, for example, one was to
cover a bounded subset of R

n by cells not exceeding a certain diameter % > 0,
the number of required cells would be of the order O(1/%n). By the above
method, only O(|U |/%q) cells are necessary to cover the corresponding portion
of the manifolds Mµ, µ ∈ U .

A discrete abstraction can again be obtained via Theorem 1 or, assuming
monotonicity of the system dynamics, by Corollary 1, and a supervisor that
is synthesized for the abstraction is guaranteed to enforce the specification
for the original hybrid plant. While we have significantly reduced the num-
ber of cells, the dimension of each individual cell G−1(νµ

j ) is not affected
and the propagation over time of each such cell is with respect to the full-
dimensional dynamics. As indicated, the manifold Mµ may very well depend
on the input symbol µ and Theorem 1 (or Corollary 1) still ensures the cru-
cial inclusion Bca ⊇ B. Note that neither Theorem 1 nor Corollary 1 refer to
the attractiveness of Mµ and therefore the respective statements remain true
even if Mµ fails to be attractive. From the construction of the measurement
quantization, however, the discrete abstraction Bca can only be expected to
be reasonably accurate if changes in the input signal only occur when the
state trajectory evolves within Vδ(hµ(P )). If the state trajectory does not
approach Vδ(hµ(P )), the resulting abstraction will not purvey sufficient in-
formation on the underlying plant dynamics and we can not expect that a
nontrivial specification can be enforced for the abstraction.

Given a continuous system (3), a constructive proof for the existence of
an attractive manifold Mµ, in general, is a nontrivial problem. However, in
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contrast to hybrid controller synthesis, non-linear stability analysis refers ex-
clusively to continuous dynamics and has been discussed in depth for many
application relevant ODEs. In Section 5, we give an example of a chemical
process that demonstrates how our hyrid controller synthesis framework ben-
efits from a rich knowledge base regarding the non-linear process dynamics.
A class of hybrid control problems for which an attractive manifold Mµ is
readily known to exist occurs in hierarchical control architectures, in which
a continuous plant is subject to a number of alternative low-level continuous
controllers; see [20]. In this configuration, a high-level discrete input symbol
ν ∈ U implements the activation of the respective low-level controller. In par-
ticular, for each µ the system (3) represents a continuous closed-loop model,
which in many applications is required to exhibit stable state components
by any resonable design objective. Again, the enforcement of such low-level
design objectives refers to continuous dynamics only and for the solution of
these control problems one can draw from the literature on non-linear control.

5 Start-up of a distillation column

We consider a distillation column in pilot plant scale which is operated at the
Institut für Systemdynamik und Regelungstechnik in Stuttgart. It is about
10m high, and consists of 40 bubble cap trays (consecutively numbered by
i = 2, . . . , 41 from bottom to top), a reboiler (i = 1) and a condenser (i =
42), see Fig. 3. Feed is supplied on tray 21. Our application example is the
separation of methanol and propanol.

The following steps can be distinguished during conventional column
start-up: initially, the column trays are partially filled with liquid mixture
from the previous experimental run. Further feed is added, and the column is
heated up until boiling point conditions are established in the whole column.
During this start-up step, the column is operated at total reflux and reboil. At
the end of this step, a single concentration front is established. The position
of this front depends on the initial concentration and varies from experiment
to experiment. In a second step, the feed F , and the control inputs (distillate
and vapour flow rate, D and V ) are adjusted to their desired steady state
values, and the initial front splits into two fronts. Then, in a third step, the
two fronts move very slowly towards their steady state. We try to speed up
the third step of the start-up procedure by introducing a suitable supervisory
control strategy. The starting point for our approximation based controller
synthesis is a continuous distillation column plant model which incorporates
the following assumptions, which are well justified during the third step of
the start-up: constant molar overflows, constant molar liquid holdups, neg-
ligible vapour holdups, total condenser, constant relative volatilities, a tray
efficiency of one. Therefore, the model is based on material balances only and
consists of one nonlinear first-order ODE for each tray, the reboiler, and the
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Fig. 3. Distillation column.

condenser [8]:

ni
Lẋi = F i+1

L xi+1 − F i
Lxi + F i−1

V yi−1 − F i
V yi +

{

FxF if i = 21 ,

0 else,
(37a)

yi = xi

α

1 + xi(α − 1)
, (37b)

where xi and yi are the methanol mole fractions in the liquid and in the
vapour on the i-th tray (i = 2, . . . , 41), in the condenser (i = 42) and the
reboiler (i = 1); α = 2.867 is the relative volatility; xF = 0.32 is the methanol
mole fraction in the feed; F i

L denotes the liquid molar flow rate, F i
V the vapour

flow rate and ni
L the molar liquid holdup. Numerical values for the latter are

given in Table 1. The table also states how F i
L and F i

V depend on F , D and
V (feed, distillate and vapour flow rate).

The feed flow rate is considered to be constant at F = 220.0[mol/h],
while D and V are control inputs. For any constant D and V , the system
(37a), (37b) has an attractive equilibrium x∗(D, V ), which, for the nominal
inputs D0 = 70.4[mol/h] and V0 = 188.2[mol/h], corresponds to the desired
operating point x∗

0 := x∗(D0, V0) of the distillation column. To speed up the
process of approaching x∗

0, we look for a controller that switches between
a finite number of constant input values. Considering only values V > 0,
D > 0 such that F + V − D ≥ 0, monotonicity of (37a), (37b) follows from
the criterion given in Theorem 2.

The construction of lower dimensional manifolds Mµ, which is vital for
approximation based discrete control, is based on wave propagation theory
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Table 1. Flow rates and liquid holdups.

i F i+1

L F i
L F i−1

V F i
V ni

L [mol]

condenser 42 0 V V 0 1.922

stripping 22-41 V − D V − D V V 1.922

feed tray 21 V − D F + V − D V V 1.922

rectifying 2-20 F + V − D F + V − D V V 1.922

reboiler 1 F + V − D F − D 0 V 135

[5]; it considers particular concentration profiles as waves and discusses their
propagation in time and space. Each wave is of the form

xi = p1 +
p2 − p1

1 + e%(i−s)
, (38)

where p1 and p2 are the asymptotic values of the methanol mole fraction at
the bottom and at the top of the wave, s is the so called wave position (point
of inflexion) and % is the slope at s. The aspect of wave propagation theory
most relevant to our discussion is that during the third startup step, the
concentration profile can be represented by two waves of the type (38), one
each in the stripping (1 ≤ i ≤ 21) and the rectifying section (21 < i ≤ 42).
Their slopes can be approximated reasonably well by the slopes correspond-
ing to the equilibrium x∗(D, V ). For the nominal inputs D0 and V0, the
slopes turn out to be %s = 0.465 and %r = 0.572 for the stripping section and
the rectifying section, respectively. Neglecting the effect of different inputs
to the slopes, the lower dimensional manifold under construction becomes
independent of the input symbol. If we further assume constant methanol
mole fractions in the reboiler and condenser, x1 = 0 and x42 = 1, the asymp-
totic values in Eq. (38) are uniquely determined by the feed concentration
x21 and the wave positions ŝs and ŝr for the stripping and rectifying section,
respectively. 2 Consequently, the wave fronts of interest are parametrized by
a map h : R

3 → R
42 mapping parameter triples (x21, ŝs, ŝr) to concentra-

tion profiles in the high dimensional state space. The i-th component hi of h
evaluates to

hi(x21, ŝs, ŝr) := x21 [ (1− e(i−1)%s) (1 + e(ŝs−1)%s) ]

× [ (1 − e20 %s) (1 + e(i−22+ŝs)%s) ]−1 (39)

2 We use the substitutions 22 − s → ŝs and 63 − s → ŝr for the wave positions in
order to end up with an order preserving map h.
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for 1 ≤ i ≤ 21, and

hi(x21, ŝs, ŝr) := [ x21 (e21%r − e(i−63+ŝr)%r )

+ (1 − x21) (e(ŝr−21)%r − e(i−21)%r ) + e(i−42+ŝr)%r − 1 ]

× [ (e21%r − 1) (e(i−63+ŝr)%r + 1) ]−1 (40)

for 22 ≤ i ≤ 42. Note that all partial derivatives of h are non-negative. Hence,
h is order preserving. This completes the construction of M ≡ Mµ := h(R3).

We now specify the operating range of the supervisor. For our particular
setting, the equilibrium x∗

0 corresponds to the parameter triple x21 ≈ 0.318,
ŝs ≈ 10.7, ŝr ≈ 28.7. The bounded box of parameters P = [0.300, 0.340] ×
[4.0, 20.0] × [23.0, 37.0] is considered a reasonably large operation range,
which we partition by p = 139 parameter cells Q(aj , bj), 1 ≤ j ≤ p. The high
dimensional measurement quantization cells are then constructed by Eq. (33)
with δ = 0.002. Input symbols U = {µ1, . . . µ9} are chosen according to
Table 2; see [8] for a detailed motivation of the particular numerical values.

Table 2. Control symbols.

symbol µ1 µ2 µ3 µ4 µ5

D [mol/h] 35.8070 59.3318 82.8566 46.8782 70.4030

V [mol/h] 188.2433 158.6412 129.0391 217.8455 188.2433

symbol µ6 µ7 µ8 µ9

D [mol/h] 93.9278 57.9494 81.4742 104.999

V [mol/h] 158.6412 247.4476 217.8455 188.2433

For each input symbol µ ∈ U , the system (37a), (37b) exhibits a unique
solution and hence induces a flow Φµ

t . With the choice of a particular sampling
interval (∆=10min), a hybrid plant model according to Sec. 2 is completely
determined.

As a specification, we require the supervisor to drive any initial state
within X0 = Vδ(h(P )) into the target region Xf = Vδ(h(Pf )) within no
more than 20min, where Pf = [0.316, 0.320]× [8.5, 11.5]× [27.5, 31.0] ⊂ P .
Choosing one of the quantization cells equal to Xf , this specification can
be formalized by the behaviour Bspec{(u, y)| y(k) = νf ∀ k ≥ 2}, where
G−1(νf ) = Xf for some νf ∈ Y . Controller synthesis is then successfully

carried out based on the estimate sets X̂ ((u, y)|[0,l]) for l = 2. A simulation
of the closed loop (consisting of 42nd order continuous plant model and DES
controller) is shown in Fig. 4 For each sampling instant, one concentration
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profile is plotted, the arrows indicate forward evolution in time and the inter-
vals per tray indicate the target region Xf . As the sampling intervals in the
closed-loop configuration are chosen to be 10min, the target region is seen to
be reached within 20min. In contrast, Fig. 5 shows an open-loop simulation
for the nominal input V0 and D0. Here, one profile every 5h is plotted, and
it takes an overall time of 20h to reach the target region.
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Fig. 4. Closed-loop (∆=10min)
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Fig. 5. Open-loop (∆=5h)

Remark: The properties employed for the construction of M are well moti-
vated by wave propagation theory and also have been validated by simulations
and experiments. It follows from the successful completion of the controller
synthesis procedure, that our discrete abstraction is accurate enough for the
particular purpose. While the insight from the process engineering perspec-
tive has been an essential guidance, it is important to note that the reliability
of our controller does not depend on the various claims and assumptions re-
garding the process model: the only relevant requirement is the inclusion
Bca ⊇ B, and this follows purely from the monotonicity of f as discussed in
Section 3, see Corollary 1.

On a decent workstation, the overall time required for the computation
of both the discrete approximation and the supervisory controller is about
10min. This is a significant performance increase when compared with earlier
work [6–8] on the very same scenario, but based on exhaustive simulation:
there, computations took many hours. Note also the different quality of reli-
ability: while our new approach guarantees the approximation to be conser-
vative, exhaustive simulation may – in principle – overlook critical states.
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6 Conclusions

In this paper, we have shown how a general method for the abstraction based
synthesis of discrete event controllers can be applied to a class of nonlinear
high-order continuous systems, characterised by a monotonicity condition
and an attractive low-dimensional manifold. In the presence of strict reliabil-
ity requirements, abstraction based controller synthesis methods have been
mostly restricted to low-order linear plant models and in this sense our con-
tribution constitutes a considerable extension to the range of potential appli-
cations. Using monotonicity, the temporal evolution of quantization cells can
be conveniently over-approximated even for nonlinear dynamics. This allows
for the economical construction of a discrete abstraction for the nonlinear
plant dynamics under investigation. Under the assumption that the plant
state approaches a low-dimensional manifold, we construct an abstraction
that in terms of computational effort depends only on the dimension of the
attractive manifold rather than the full order of the plant dynamics. Note
that both of our conditions lie completely within the domain of continuous
dynamics: whether or not a plant is monotone and whether or not it exhibits
an attractive manifold can be assessed by means of the classical theories. One
might argue that our conditions are too restrictive for our results to be of
practical relevance. This is not true, and we present a real-world example to
support our claim to the contrary: based on a 42nd order nonlinear model
of a pilot plant scale distillation column, we synthesize a discrete controller
that speeds up the column start-up procedure. A comparison with earlier
work underlines the achieved computational benefits.

Acknowledgement: We’d like to thank D. Flockerzi for valuable discussions
on monotone dynamical systems and A. Kienle, A. Itigin, and E. Klein for
their help with the the distillation column scenario.
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