
THINK CONTINUOUS, ACT DISCRETE:
DES TECHNIQUES

FOR CONTINUOUS SYSTEMS

T. Moor1, J. Raisch2

1Research School of Information Sciences and Engineering
Australian National University, Canberra

e-mail: thomas.moor@anu.edu.au

2 Lehrstuhl für Systemtheorie technischer Prozesse
Otto-von-Guericke Universität, Magdeburg, Germany

and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg, Germany
e-mail: raisch@mpi-magdeburg.mpg.de

Keywords: hybrid systems, supervisory control,
discrete abstractions, modular control, decentralised
control.

Abstract. This contribution addresses the synthesis
of discrete supervisors for continuous plants, with
a particular emphasis on modular and decentralised
control architecture. We follow a well known style
of reasoning that has been originally developed in
the context of DESs and demonstrate its applicabil-
ity to the design of hybrid systems.

1 Introduction

Many technical processes which are naturally mod-
elled by continuous dynamical systems are sub-
ject to discrete event control. Examples are com-
plex production processes where high level control
switches between distinct modes of continuous op-
eration. Another example is the discrete allocation
of resources to a process configuration that intrin-
sically depends on continuous dynamics. The re-
sulting heterogeneous control systems, consisting of
both continuous and discrete event components, are
commonly referred to as hybrid systems [1, 3, 15].

The overall state space of a hybrid system is nei-
ther finite nor does it inherit the vector space struc-
ture of the continuous components. This is precisely
why a hybrid system is neither directly amenable to

the use of standard DES methods nor can traditional
techniques from continuous control be applied. Fi-
nite discrete abstractions of the continuous dynam-
ics seem a straightforward approach to escape this
dilemma. This approach translates a hybrid control
problem into a purely discrete one, which can sub-
sequently be solved by adapting DES methods; e.g.
[12, 18]. However, there remains the crucial ques-
tion whether solutions on the abstraction level carry
over to the actual hybrid control configuration.

When addressing language inclusion type control
synthesis problems, the answer is affirmative if the
abstraction is conservative; e.g. [8, 10]. In this paper,
we extend our approach in order to address modular
and decentralised control architectures. Our princi-
ple strategy is to adapt DES techniques to the typical
input/output structure of continuous systems, where
we use J.C. Willems’ behavioural system theory [17]
as a formal framework for our discussion. As our
main result, we obtain methods for the design of gen-
eral a class of modular/decentral hybrid systems.

The paper is organised as follows. In Section 2, we
summarise our general framework for the discrete
supervisory control of continuous systems. Sec-
tion 3 provides results regarding abstraction based
supervisory controller synthesis. In Section 4 and 5
we present extensions to modular and decentralised
control, respectively.

2 Supervisory control of I/- behaviours

In this section, we summarise a fairly general frame-
work for the discrete supervisory control of con-
tinuous systems [8, 10]. Our case is motivated by
the following principle: regardless of the particu-
larities of a specific plant, a discrete supervisor can
only interact via discrete events. Hence, the plant
must be equipped with suitable actuators and sensors
that mediate between continuous signals and discrete
events. If we assume that this external interface is
given, the problem of supervisory controller synthe-
sis can be discussed in analogy to P.J. Ramadge and
W.M. Wonham’s supervisory control theory for dis-
crete event systems; e.g. [12, 18].

continuous dynamics with discrete external signals

(finite automaton, DES)
discrete supervisor

continuous process
(ODE)

sensoractuator

u :
� +

0 →
� m y :

� +

0 →
� p

c : � 0 → Win a : � 0 → Wout

Figure 1: Hybrid closed-loop system

An example of a hybrid closed-loop configuration is
depicted in Figure 1. Detailed mathematical mod-
els have been developed in e.g. [1, 3, 9, 10, 11, 15],
including configurations based on clock time (events
occur at a fixed sampling rate) and logic time (events
may occur at any time, e.g. when continuous vari-
ables cross critical thresholds). In contrast to the ba-
sic DES framework, we will assume that the plant
inherits the input/output structure from the underly-
ing continuous system; i.e. the external signal space
is a product composition of input and output com-
ponents rather than a disjoint union of controllable
and uncontrollable events. As we shall see in Sec-
tion 3, this facilitates abstraction based supervisory
controller synthesis methods.

Our discussion is set within J.C. Willems’ be-
havioural systems theory; e.g. [17, 16]. There, a dy-
namical system is a model of a phenomenon and a

behaviour is the set of all trajectories on which the
phenomenon can —according to the model— pos-
sibly evolve. Similar to approaching DESs via the
formal languages they generate, Willems suggests
to discuss dynamical systems in terms of their be-
haviours.

Definition 2.1. (See [17], Def. II.1) A dynamical
system is a triple 6 = (T , W, B), with T ⊆

�

the time axis, W the signal space, and B ⊆ W T the
behaviour. 1

�

In this paper, we focus attention on behaviours that
externally evolve on discrete event signals; 2 i.e.,
we assume T = � 0 and |W | ∈ � . The traditional
notion of inputs and outputs is captured by the fol-
lowing definition of I/- behaviours.

Definition 2.2. (see [17], Defs. VIII.1, VIII.4) A be-
haviour B ⊆ W

�
0 over the signal space W =

Win × Wout is an I/- behaviour if: 3 4

(i) the input is free, i.e. Pin B = W
�

0
in ; and

(ii) the output does not anticipate the input, i.e. for
all k ∈ � 0, w̃, ŵ ∈ B with Pinw̃|[0,k] =

Pinŵ|[0,k] there exists a w ∈ B such that
Poutw|[0,k] = Poutw̃|[0,k] and Pinw = Pinŵ. �

Adapting Ramadge and Wonham’s supervisory con-
trol theory for DESs, the task of a supervisor is to
restrict the plant behaviour Bp ⊆ W

�
0 such that the

closed loop is guaranteed to evolve within a specified
set of acceptable signals, denoted Bspec ⊆ W

�
0 . In

analogy to the plant, the supervisor is represented
by a behaviour Bsup ⊆ W

�
0 , denoting the set of

external signals it can evolve on. The closed-loop

1The set of maps from T to W is denoted W T � {w | w :
T → W }.

2 � denotes the positive integers (without zero); let �
0

�
� ∪ {0}. We write |A| ∈ � to indicate that the set A has only
finite many elements and |A| 6= ∅.

3Unlike Willems’ I/O systems ([17], Def. VIII.3), we do not
require the output to process the input. The slightly weaker
notion of I/- behaviours is motivated by the target class of ap-
plications: we cannot assume that the discrete event interface
reveals sufficient information about the underlying continuous
dynamics such that the past of the discrete signal together with
input would uniquely determine the future evolution.

4By Pin and Pout we denote the natural projections from
W � 0 to the input and output component, respectively; i.e.
Pinw = c and Poutw = a for w = (c, a), c ∈ W � 0

in , a ∈ W � 0
out .

behaviour is the intersection Bcl = Bp ∩ Bsup, i.e.
only those external signals can occur in the closed-
loop configuration that are consistent with both plant
and controller dynamics. The supervisor Bsup is said
to enforce the specification Bspec if Bcl ⊆ Bspec.
However, two conditions apply for the interconnec-
tion of Bp and Bsup. We state and motivate these
admissibility criteria in terms of behaviours.

The first condition on behavioural interconnection
ensures that the synchronisation of the external sig-
nal is performed “locally on the time axis”: at any
instance of time and independent of the past trajec-
tory, it shall be clear on which value the two systems
can agree without “getting stuck” in their future evo-
lution. This requirement corresponds to the notion of
nonconflicting languages in DES theory.

Definition 2.3. (See [8]) Two behaviours Bp,
Bsup ⊆ W

�
0 are said to be nonconflicting if

Bp|[0,k] ∩ Bsup|[0,k] = (Bp ∩ Bsup)|[0,k] for all
k ∈ � 0. �

Our second condition on behavioural interconnec-
tion specifically addresses I/- behaviours: the super-
visor may enable or disable certain plant input events
but must not impose restrictions on the plant output.

Definition 2.4. (See also [8]) 5 6 7 A behaviour
Bsup ⊆ W

�
0 , W = Win × Wout, is generically

implementable if k ∈ � 0, w|[0,k] ∈ Bsup|[0,k],
w̃|[0,k] ∈ W k+1, and w̃|[0,k] ≈y w|[0,k] implies
w̃|[0,k] ∈ Bsup|[0,k]. �

Our supervisory control problem is summarised as
follows:

5The notion of generic implementability differs slightly
from implementability w.r.t. a particular plant as defined in
[8]. This adjustment leads to admissibility criteria that, as we
will see in Proposition 3.2, are independent of particular plant
dynamics. However, it can be shown that the two alternative
notions of implementability lead to precisely the same closed-
loop behaviours and, in this sense, the respective supervisory
control problems are equivalent.

6The restriction operator (·)|[k1,k2] : W � 0 → W k2−k1+1

is defined by w|[k1,k2] = (w(k1), w(kk+1), . . . w(k2)) for all
k1, k2 ∈ �

0, k1 ≤ k2, and all w : �
0 → W . For k1 > k2 let

w|[k1,k2]
� ε, W 0 � {ε}, where ε denotes the empty string.

7We use w̃|[0,k] ≈y w|[0,k] as an abbreviation for the two
restricted trajectories to be identical up to the last output event,
i.e. Pinw̃|[0,k] = Pinw|[0,k] and Poutw̃|[0,k−1] = Poutw|[0,k−1].

Definition 2.5. (See also [8], Def. 16) Given a plant
behaviour Bp ⊆ W

�
0 , W = Win×Wout, and a spec-

ification Bspec ⊆ W
�

0 , we call the pair (Bp, Bspec)

a supervisory control problem. We say that

(i) a supervisor Bsup ⊆ W
�

0 is admissible w.r.t.
the plant Bp if Bp and Bsup are nonconflicting.
and Bsup is generically implementable;

(ii) a supervisor Bsup ⊆ W
�

0 enforces the specifi-
cation Bspec if Bcl � Bp ∩ Bsup ⊆ Bspec;

(iii) a supervisor Bsup is a solution of (Bp, Bspec)

if Bsup is admissible to Bp and enforces Bspec;
(iv) a solution Bsup is nontrivial if it imposes a

nontrivial closed-loop behaviour Bcl 6= ∅. �

It is readily observed that Bsup = ∅ is a trivial solu-
tion to any supervisory control problem. Moreover,
Bsup = ∅ is the only trivial solution:

Proposition 2.6. Let the supervisor Bsup ⊆ W
�

0

be admissible w.r.t. an I/- behaviour Bp ⊆ W
�

0 ,
W = Win × Wout. If Bsup 6= ∅, then Bp ∩Bsup 6= ∅.

Proof. Pick w ∈ Bsup. As the input of Bp

is free, there exists w̃ ∈ Bp with Pinw̃ = Pinw,
and, hence, w̃|[0,0] ≈y w|[0,0]. From generic imple-
mentability we obtain w̃|[0,0] ∈ Bsup|[0,0] ∩Bp|[0,0].
The nonconflicting property ensures that w̃|[0,0] ∈

(Bsup ∩ Bp)|[0,0] 6= ∅. Hence, Bsup ∩ Bp 6= ∅. �

Whilst the trivial solution is unacceptable in almost
any application context, it facilitates —very much in
the spirit of [12, 18]— a set-theoretic lattice argu-
ment that establishes the unique existence of a least
restrictive solution:

Theorem 2.7. (See also [8]) Let (Bp, Bspec) be a
supervisory control problem. The set of all solutions
of (Bp, Bspec) is a complete upper semi-lattice with
the join operator “∪” and the partial order “⊆”. The
supremal element B

↑
sup of the lattice is referred to as

the least restrictive solution of (Bp, Bspec).

Proof. Given an arbitrary family of behaviours
(Bα)α∈A, Bα ⊆ W

�
0 , α ∈ A, let B∪ � ∪α∈ABα.

(i) If Bp and Bα are nonconflicting for each α ∈ A
then so are Bp and B∪: pick any k ∈ � 0, w|[0,k] ∈

Bp|[0,k] ∩ B∪|[0,k]; then there exists an α ∈ A
such that w|[0,k] ∈ Bp|[0,k] ∩ Bα|[0,k] and hence
w|[0,k] ∈ (Bp ∩ Bα)|[0,k] ⊆ (Bp ∩ B∪)|[0,k]. (ii)
If Bα is generically implementable for each α ∈ A

then so is B∪: pick any k ∈ � 0, w|[0,k] ∈ B∪|[0,k],
w̃|[0,k] ≈y w|[0,k]; then there exists α ∈ A such that
w|[0,k] ∈ Bα|[0,k] and hence w̃|[0,k] ∈ Bα|[0,k] ⊆

B∪|[0,k]. (iii) Clearly, if Bα enforces the Bspec for
each α ∈ A then so does B∪. �

The least restrictive supervisor B
↑
sup contains all

other solutions. In particular, B
↑
sup is a nontrivial

solution if and only if a nontrivial solution exists.

3 Abstraction based synthesis

If both Bp and Bspec were realised by finite au-
tomata, a realisation of the least restrictive solution
B

↑
sup to the problem (Bp, Bspec) could be computed

with a slight modification of standard DES tools
[12]. However, since hybrid plant behaviours Bp al-
most never have a finite realisation, we instead work
with an approximation Bca that is realised by a fi-
nite automaton. We say Bca is an abstraction of Bp

if Bp ⊆ Bca. Under this condition, we will guar-
antee that solutions for Bca carry over to Bp. The
following notion of completeness plays a key role in
our discussion:

Definition 3.1. (See [17], Def. II.4) A behaviour
B ⊆ W

�
0 is complete if for all w ∈ W

�
0 :

w ∈ B ⇐⇒ ∀ k ∈ � 0 : w
∣

∣

[0,k] ∈ B
∣

∣

[0,k] . (1)
�

Behaviours that are realised by finite state ma-
chines are complete [5]. As another example, finite-
dimensional discrete-time linear systems are seen to
induce a complete external behaviour [17]. How-
ever, not all behaviours are complete and, in the case
of our target configuration in Figure 1, completeness
can not be determined by a finite computational pro-
cedure. For now, we use completeness as a conve-
nient formal vehicle, subject to further justification.

Proposition 3.2. Let Bp ⊆ W
�

0 , W = Win × Wout,
be an I/- behaviour and let Bsup ⊆ W

�
0 be generi-

cally implementable. If both Bp and Bsup are com-
plete, then they are nonconflicting.

Proof. Pick any k ∈ � 0, w|[0,k] ∈ Bp|[0,k] ∩

Bsup|[0,k]. Without loss of generality, we may as-
sume w ∈ Bsup. Pick some w̃ ∈ Bp with w̃|[0,k] =

w|[0,k]. Using the I/- property of Bp and the generic
implementability of Bsup, we can construct ŵ ∈

W
�

0 with ŵ|[0,k+1] ∈ Bp|[0,k+1] ∩ Bsup|[0,k+1] and
ŵ|[0,k] = w|[0,k]. As we have started with an ar-
bitrary w|[0,k] ∈ Bp|[0,k] ∩ Bsup|[0,k], we can iter-
ate our construction to obtain a sequence of trajec-
tories (wκ)κ∈

�
0 , wκ ∈ W

�
0 , with wκ+1|[0,k+κ] =

wκ |[0,k+κ] for all κ ∈ � 0. Hence, the sequence
converges pointwise and we denote the limit by
w∞ ∈ W

�
0 ; i.e. w∞(j) � limκ→∞ wκ(j), for all

j ∈ � 0. Then, w∞|[0,κ] ∈ Bp|[0,κ] ∩ Bsup|[0,κ] for
all κ ∈ � 0. Completeness of Bp and Bsup then im-
plies w∞ ∈ Bp ∩Bsup. Hence, w|[0,k] = w∞|[0,k] ∈

(Bp ∩ Bsup)|[0,k]. �

From the above proposition, we derive our main re-
sult on abstraction based synthesis:

Theorem 3.3. Let Bca ⊆ W
�

0 be an abstraction of
a plant Bp ⊆ Bca and let Bsup be a complete and
nontrivial solution of (Bca, Bspec), Bspec ⊆ W

�
0 .

If Bp is a complete I/- behaviour, then Bsup is a non-
trivial solution of (Bp, Bspec).

Proof. Generic implementability does not depend
on the particular plant, and, by Proposition 3.2, we
obtain that Bsup is admissible w.r.t. Bp. Clearly,
Bsup enforces the specification for Bca, and, hence,
Bsup solves (Bp, Bspec). Nontriviality is a conse-
quence of Proposition 2.6. �

Recall that, in general, we cannot tell whether a hy-
brid system is complete. However, [6] identifies a
general class of I/- behaviours which together with a
generically implementable complete supervisor pos-
sess the nonconflicting property; this class of be-
haviours includes our target configuration depicted
in Figure 1 and does not necessarily require plant
completeness. Given a plant Bp that possibly fails
to be complete, let Bca � {w ∈ W

�
0 | ∀ k ∈ � 0 :

w|[0,k] ∈ Bp|[0,k]} ⊇ Bp denote it’s completion: it
can be shown that Bca is the smallest complete su-
perset of Bp; e.g. [16]. Appealing to the results in
[6], we henceforth may assume that Bp is complete,
where, if need be, we substitute the original plant
behaviour by its completion. One is then left to en-
sure that the candidate supervisor is complete. This
clearly is the case for any supervisor that is realised
by a finite state machine. Moreover, completeness
of least restrictive supervisors is implied by the com-
pleteness of the specification, regardless of the plant

being complete or not:

Proposition 3.4. Let Bp, Bspec ⊆ W
�

0 . If Bspec ⊆

W
�

0 is complete, then the least restrictive solution
B

↑
sup of (Bp, Bspec) is also complete.

Proof (Outline). Let B
′

� {w ∈ W
�

0 | ∀ k ∈ � 0 :
w|[0,k] ∈ B

↑
sup|[0,k]} . Obviously, B′ is complete and

B
↑
sup ⊆ B

′. The key observation is that B
↑
sup|[0,k] =

B
′|[0,k] for all k ∈ � 0, from which one can deduce

that B
′ is a solution of (Bp, Bspec). As B

↑
sup is least

restrictive, we conclude B
↑
sup = B

′. �

4 Modular supervisory control

Setting up an overall supervisor by combining a
number of individual supervisors is referred to as
modular supervisory control. There are two poten-
tial benefits from modular supervisors. First, it may
turn out that the synthesis of individual supervisors
and their combination is computationally cheaper
than the direct synthesis of an overall supervisor.
Second, given a plant, one may set up a library of su-
pervisors which can be combined in order to suit var-
ious applications for that plant. The modular control
architecture we consider in this section is illustrated
in Figure 2 and corresponds to the concept modular-
ity that has been proposed for DESs; e.g. [2, 13, 18].
It is apparent from the picture that the hybrid char-
acter and the issue of modularity are well seperated.
We therefor expect that basic principles from DES
theory carry over to the behavioural framework and
thus can be employed to establish modular controller
synthesis for hybrid systems.

continuous dynamics with discrete external signals

c(k) ∈ Win a(k) ∈ Wout

u(t) ∈

� m y(t) ∈

� p

supervisor 1

actuator sensor

supervisor 2

continuous process

Figure 2: Modular control architecture

Given a plant Bp, we assume that the problem of
supervisory control has been solved for two specifi-
cations Bspec1 and Bspec2 individually. That is, two
supervisors Bsup1 and Bsup2 have been established,
both admissible w.r.t. the plant and —when con-
nected individually— enforcing the desired specifi-
cations Bspec1 and Bspec2, respectively. Here, a sen-
sible question to ask is under which circumstances
and how these two supervisors can be combined into
an overall supervisor Bsup such that both specifica-
tions are enforced simultaneously, i.e. the closed-
loop behaviour Bcl = Bp ∩ Bsup must be a sub-
set of the intersection Bspec � Bspec1 ∩ Bspec2.
A natural starting point here is to run both super-
visors Bsup1 and Bsup2 in parallel; i.e. we choose
Bsup = Bsup1∩Bsup2 to be our candidate supervisor.
Trivially, this Bsup enforces the combined specifica-
tion Bspec. However, while the property of admis-
sibility for supervisors is preserved under union, the
corresponding statement does not hold true for inter-
sections. Thus, we ask for a criterion which guar-
antees our candidate Bsup to be admissible w.r.t. the
plant Bp. Furthermore, as on the realization level
we intend to run Bsup1 and Bsup2 in parallel, we re-
quire that they do not conflict as long as the trajec-
tory evolves within the plant behaviour. As we will
show, the latter requirement will imply admissibility,
and we start our discussion with a formal definition
of the relative nonconflicting property.

Definition 4.1. (See [7], Sec. 4) Two behaviours
Bsup1 ∈ W

�
0 and Bsup2 ∈ W

�
0 are nonconflicting

relative to Bp ∈ W
�

0 if for all k ∈ � 0:

Bp
∣

∣

[0,k] ∩ Bsup1
∣

∣

[0,k] ∩ Bsup2
∣

∣

[0,k]

= Bp
∣

∣

[0,k] ∩ (Bsup1 ∩ Bsup2)
∣

∣

[0,k] .
�

We expect that a least restrictive supervisor will
“take no action outside the plant behaviour”. The
following proposition formalises this line of thought,
and leads to a characterisation of the relative noncon-
flicting property for least restrictive supervisors.

Proposition 4.2. Let B
↑
sup denote the least re-

strictive solution of a supervisory control problem
(Bp, Bspec). Then for all k ∈ � 0 and all w ∈ W

�
0 ,

w|[0,k] ∈ B
↑
sup|[0,k] \ Bp|[0,k] implies w ∈ B

↑
sup.

Proof (Outline). Pick arbitrary k ∈ � 0, w|[0,k] ∈

B
↑
sup|[0,k] \ Bp|[0,k]. Let Bsup � B

↑
sup ∪ {v ∈

W
�

0 | v|[0,k] = w|[0,k]}. It can be seen that Bsup

solves (Bp, Bspec); further details are omitted for
brevity. Clearly, Bsup ⊇ B

↑
sup. As B

↑
sup is least

restrictive, this implies Bsup = B
↑
sup. From the defi-

nition of Bsup we obtain w ∈ Bsup. �

We can now show that two least restrictive supervi-
sors that have been designed for the same plant are
relatively nonconflicting if and only if they are non-
conflicting in the ordinary, “non-relative” sense:

Proposition 4.3. Let Bp ⊆ W
�

0 be a plant be-
haviour, and let Bspec1, Bspec2 ⊆ W

�
0 be two

complete specifications. Denote the least restric-
tive solutions of the supervisory control problems
(Bp, Bspec1), (Bp, Bspec2) by B

↑
sup1 and B

↑
sup1, re-

spectively. Then B
↑
sup1 and B

↑
sup2 are nonconflicting

if and only if they are nonconflicting relative to Bp.

Proof. Assume that B
↑
sup1 and B

↑
sup2 are noncon-

flicting relative to Bp, and pick arbitrary k ∈ � 0,
w ∈ |[0,k] ∈ B

↑
sup1|[0,k] ∩ B

↑
sup2|[0,k]. In the case

of w ∈ |[0,k] ∈ Bp|[0,k], the relative nonconflict-
ing property gives us w|[0,k] ∈ (B

↑
sup1 ∩ B

↑
sup2)|[0,k].

In the case of w|[0,k] 6∈ Bp|[0,k], we assume with-
out loss of generality that w ∈ B

↑
sup1 and apply

Proposition 4.2 to the supervisor B
↑
sup2: w|[0,k] ∈

B
↑
sup2|[0,k] \ Bp|[0,k] gives us w ∈ B

↑
sup2. Thus,

in both cases we have that w|[0,k] ∈ (B
↑
sup1 ∩

B
↑
sup2)|[0,k]. Hence, B

↑
sup1 and B

↑
sup2 are noncon-

flicting. The converse implication follows immedi-
ately from Definition 4.1. �

Note that for a hybrid plant we can conduct this dis-
cussion on the abstraction level, where complete-
ness of the substitute plant and the individual su-
pervisors can be assumed. By the above proposi-
tion, our individual supervisors then must be non-
conflicting if we want to apply the combined super-
visor Bsup � B

↑
sup1 ∩ B

↑
sup2. In fact, this condition

also secures generic implementability of Bsup:

Proposition 4.4. Let Bsup1 ⊆ W
�

0 , Bsup2 ⊆ W
�

0 ,
W = Win × Wout be generically implementable and
nonconflicting. Then Bsup = Bsup1∩Bsup2 is gener-
ically implementable.

Proof. Pick arbitrary k ∈ � 0, w|[0,k] ∈ Bsup|[0,k],
w̃|[0,k] ∈ W k+1, w̃|[0,k] ≈y w|[0,k]. Then w|[0,k] ∈

Bsup1|[0,k] ∩ Bsup2|[0,k], and we obtain from generic
implementability of Bsup1 and Bsup2 that w̃|[0,k] ∈

Bsup1|[0,k] ∩ Bsup2|[0,k]. Then, nonconflictingness
implies w̃|[0,k] ∈ (Bsup1 ∩ Bsup2)|[0,k]. �

Admissibility is readily obtained for any complete
I/- plant behaviour Bp, since under this hypothesis
Bp is nonconflicting in the interconnection with any
complete generically implementable supervisor; see
Proposition 3.2. We summarise the results of this
section by the following corollary.

Corollar 4.5. Let Bp ⊆ W
�

0 , W = Win ×Wout, be
a complete I/- behaviour. Let Bspec1, Bspec2 ⊆ W

�
0

be complete. Denote the least restrictive solutions of
(Bp, Bspec1) and (Bp, Bspec2) by B

↑
sup1 and B

↑
sup2

respectively. Then the following are equivalent:

(i) B
↑
sup1 and B

↑
sup2 are nonconflicting;

(ii) B
↑
sup = B

↑
sup1 ∩ B

↑
sup2 is the least restrictive

solution of (Bp, Bspec1 ∩ Bspec2), and B
↑
sup1

and B
↑
sup2 are nonconflicting relative to Bp.

Proof. We show “(i) ⇒ (ii)”. From Proposition 4.4,
we obtain generic implementability of B

↑
sup. Propo-

sition 3.4 ensures completeness of B
↑
sup1 and B

↑
sup2.

As completeness is retained under intersection, B↑
sup

is also complete. Thus, Proposition 3.2 provides
admissibility of B

↑
sup w.r.t. Bp. Clearly, B

↑
sup en-

forces Bspec � Bspec1 ∩ Bspec2 and, hence, solves
(Bp, Bspec). Any solution Bsup of (Bp, Bspec) is
also a solution of (Bp, Bspec1) and (Bp, Bspec2).
This implies Bsup ⊆ B

↑
sup1, Bsup ⊆ B

↑
sup2, and,

hence, Bsup ⊆ B
↑
sup. Therefore B

↑
sup is the least re-

strictive solution of (Bp, Bspec). The relative non-
conflicting property in (ii) is seen by Proposition 4.3.
The latter also gives “(ii) ⇒ (i)”. �

Under the hypothesis of the above corollary, we may
run the individual supervisors B

↑
sup1 and B

↑
sup2 in

parallel on the plant Bp and by this achieve both
specifications Bspec1 and Bspec2 simultaneously if
and only if the individual supervisors are noncon-
flicting. Furthermore, if the latter condition is ful-
filled and the combined supervisor B

↑
sup � B

↑
sup1 ∩

B
↑
sup2 imposes an empty closed-loop behaviour, we

conclude that the trivial supervisor is the only solu-
tion that enforces both specifications.

5 Decentralised supervisory control

As in modular control, we are looking for multi-
ple supervisors that enforce their individual speci-
fications simultaneously. In contrast to the previous
section, decentralised control addresses scenarios in
which each controller has its own interface to the
plant: the individual supervisors may not share the
same measurement information nor may they have
the same set of controls at their disposal. The prin-
ciple aim is to address applications in which com-
munication constraints enforce a decentralised con-
trol architecture, although computational benefits for
controller synthesis also play a role in the DES lit-
erature on this topic; e.g. [4, 14, 19]. In this sec-
tion, we address the hybrid decentralised control
architecture shown in Figure 3. Motivated by the
underlying continuous dynamics and by our results
for the monolithic case we carefully discuss the in-
put/output structure from the perspectives of the in-
dividual supervisors.

c2(k) ∈ Win2

u2(t) ∈ � m y2(t) ∈ � p

u1(t) ∈ � m y1(t) ∈ � p

c1(k) ∈ Win1 a1(k) ∈ Wout1

continuous process

actuator 1 sensor 1

supervisor 1

actuator 2 sensor 2

supervisor 2

Bp

Bp1[Bsup2]

a2(k) ∈ Wout2

Figure 3: Decentralised control architecture

As in the previous sections, our plant model is an I/-
behaviour Bp ⊆ W

�
0 , W = Win × Wout. To rep-

resent the two separate interfaces, we assume that
Win = Win1 × Win2 and Wout = Wout1 × Wout2,
where W1 = Win1 × Wout1 and W2 = Win2 × Wout2

are the external signal spaces of the respective in-
terface/supervisor. Throughout this section we refer
to this particular structure of W , including the pro-
posed notation. For a time driven hybrid control sys-

tem where the sampling instances are uniform for
both interfaces, the hypothesis of Bp to be an I/-
behaviour is readily justified by the traditional no-
tion of inputs and outputs of the underlying contin-
uous dynamics. However, this is not the case for an
event driven plant. In the latter case, one needs to
distinguish the discrete time axis for each interface,
as the k-th measurement event a2(k) form sensor 2,
in general, occurs at a different instant of real time
as a1(k). For simplicity —not only of notation— we
restrict formal treatment to the time driven case.

Given two specifications Bspec1 ⊆ W
�

0
1 , Bspec2 ⊆

W
�

0
2 , we aim at the design of two supervisors

Bsup1 ⊆ W
�

0
1 and Bsup2 ⊆ W

�
0

1 that, when con-
nected to the plant via their interfaces, do enforce
the respective specifications. Formally, we define the
overall closed-loop behaviour by

Bcl � Bp ∩ (Bsup1 ×π Bsup2) , (2)

where the product operator “×π” is the usual prod-
uct composition plus the obvious re-arrangement of
components to fit the scheme imposed by W =

Win1 × Win2 × Wout1 × Wout2. 8 The pair of su-
pervisors (Bsup1, Bsup2) enforces the specification
given by (Bspec1, Bspec2) if the inclusion Bcl ⊆

Bspec � Bspec1 ×π Bspec2 is fulfilled. Note that by
our product composition of specifications we cannot
explicitly demand that the two supervisors cooperate.
However, the supervisors interact via the plant, and
our specification can implicitly enforce the supervi-
sors to share common plant resources in a coopera-
tive fashion to achieve the overall control objective.

In the following definition of solutions to the decen-
tralised control problem we pragmatically copy the
admissibility conditions from the ordinary supervi-
sory control problem, subject to further justification.

Definition 5.1. The triple (Bp, Bspec1, Bspec2) is
said to be a decentralised control problem, where
the I/- behaviour Bp ⊆ W

�
0 is the plant and

Bspec1 ⊆ W
�

0
1 , Bspec2 ⊆ W

�
0

2 , are the spec-
ifications for the respective signals. The pair of
supervisors (Bsup1, Bsup2) is a solution of (Bp,

Bspec1, Bspec2) if Bsup1 ×π Bsup2 solves the super-
visory control problem (Bp, Bspec1 ×π Bspec2). �

8Throughout this section, we use the subscript “π” to indi-
cate the appropriate permutation.

The immediate benefit of the above definition is
that one can draw from Theorem 3.3 for abstraction
based approaches, and this includes the convenient
assumption of completeness of Bp on the abstraction
level. However, we need to justify our pragmatic ad-
missibility conditions from the perspective of the in-
dividual supervisors. Are the individual supervisors
of a solution in the sense of Definition 5.1 generi-
cally implementable? Is the plant from the perspec-
tive provided by each individual interface an I/- be-
haviour? We will obtain affirmative answers to both
questions. The first one is straightforward:

Proposition 5.2. Let Bsup1 ⊆ W1 and Bsup2 ⊆

W
�

0
2 be non-empty supervisors, and let Bsup �

Bsup1 ×π Bsup2. Then Bsup is generically imple-
mentable if and only if both Bsup1 and Bsup2 are
generically implementable.

Proof (Outline). We appeal to elementary properties
of product composition and restriction operator. �

To answer the second question, we derive a plant
model from the perspective of each individual su-
pervisor, where symmetry allows us to restrict atten-
tion to the first supervisor. For the interface provided
for Bsup1, a plant model Bp1[Bsup2] ⊆ W

�
0

1 shall
include all trajectories w1 ∈ W

�
0

1 which can possi-
bly occur under the restrictions imposed by Bsup2 on
Bp. Formally, we define

Bp1[Bsup2] � {w1 ∈ W
�

0
1 |

∃ w2 ∈ Bsup2 : (w1, w2)π ∈ Bp} . (3)
The above formula is based on an intersection and
a projection. In general, these operations are readily
seen not to preserve the input/output structure of Bp;
e.g., if the behaviour Bsup2 consists of one trajec-
tory only, this imposes a rather restrictive condition
on the measurement readings from sensor 2, which
in turn restricts the input signals to Bp, such that the
input of Bp1[Bsup2] cannot be expected to be free.
The following two propositions develop conditions
for Bsup2 that ensure that Bp1[Bsup2] is an I/- be-
haviour.

We first consider a simplified problem in which the
behavioural restriction arises only from a fixed input
signal rather than an entire behaviour Bsup2.

Proposition 5.3. Let Bp ⊆ W
�

0 be an I/- be-

haviour (w.r.t. W = Win × Wout). For c2 ∈ W
�

0
in2

define

B
′
p1[c2] �

{(c1, a1, a2) ∈ (Win1 × Wout1 × Wout2)
�

0 |

(c1, c2, a1, a2) ∈ Bp} . (4)

Then B
′
p1[c2] is an I/- behaviour (w.r.t. Win1 ×Wout).

If Bp is complete, so is B
′
p1[c2]. By uniform sub-

stitution we obtain the corresponding definition and
properties of B

′
p2[c1].

Proof. Clearly, the input of B
′
p1[c2] is free. To

show that the output of B
′
p1[c2] does not antici-

pate the input, pick any k ∈ � 0, (c̃1, ã1, ã2),
(ĉ1, â1, â2) ∈ B

′
p1[c2] with c̃1|[0,k] = ĉ1|[0,k].

Then (c̃1, c2, ã1, ã2), (ĉ1, c2, â1, â2) ∈ Bp. By
hypothesis, Bp is an I/- behaviour. Hence, there
exist (a1, a2) ∈ W

�
0

out with (a1, a2)|[0,k] =

(â1, â2)|[0,k] and (c̃1, c2, a1, a2) ∈ Bp. This im-
plies (c̃1, a1, a2) ∈ B

′
p1[c2], completing the proof

of B
′
p1[c2] to be an I/- behaviour. We show that if

Bp is complete so is B
′
p1[c2]. Pick any k ∈ � 0,

(c1, a1, a2) ∈ (Win1 × Wout)
�

0 , and observe that
(c1, a1, a2)|[0,k] ∈ B

′
p1[c2]|[0,k] is equivalent to

(c1, c2, a1, a2)|[0,k] ∈ Bp|[0,k]. Hence, complete-
ness of Bp implies completeness of B

′
p1[c2]. �

Proposition 5.4. Let Bp ⊆ W
�

0 be a complete I/-
behaviour (w.r.t. W = Win × Wout) and let Bsup2 ⊆

W
�

0
2 , Bsup2 6= ∅, be complete and generically im-

plementable (w.r.t. Win2 × Wout2). Then Bp1[Bsup2]
is an I/- behaviour (w.r.t. Win1 × Wout1)

Proof. For the scope of this proof, let B
′
sup2 �

Bsup2 ×π W
�

0
out1 ⊆ (Win2 × Wout1 × Wout2)

�
0 . Ob-

serve the generic implementability and complete-
ness of Bsup2 carry over to B

′
sup2. We now show

that the input of Bp1[Bsup2] is free. Pick an ar-
bitrary c1 ∈ W

�
0

in1 and focus attention of B
′
p2[c1].

From Proposition 5.3 we obtain that B
′
p2[c1] is

a complete I/- behaviour. Hence, by Proposi-
tion 2.6, we have B

′
p2[c1] ∩ B

′
sup2 6= ∅. Thus,

there exists (c2, a1, a2) with (c2, a2) ∈ Bsup2 and
(c1, c2, a1, a2) ∈ Bp. This implies (c1, a1) ∈

Bp1[Bsup2], concluding the proof of the input being
free. We show that for Bp1[Bsup2] the input does
not anticipate the output. Pick arbitrary k ∈ � 0,
(c̃1, ã1), (ĉ1, â1) ∈ Bp1[Bsup2] with c̃1|[0,k] =

ĉ1|[0,k]. Then there exist (c̃2, ã2) ∈ Bsup2 with
(c̃1, c̃2, ã1, ã2) ∈ Bp. As Bp is an I/- behaviour,
we can find a1 and a2 such that (ĉ1, c̃2, a1, a2) ∈

Bp and (a1, a2)|[0,k] = (ã1, ã2)|[0,k]. Clearly,
(c̃2, a1, a2)|[0,k] ∈ B

′
sup2|[0,k]. Focus attention

on B
′
p2[ĉ1] and observe that (c̃2, a1, a2)|[0,k] ∈

B
′
p2[ĉ1]|[0,k]. From Proposition 5.3 we ob-

tain that B
′
p2[ĉ1] is a complete I/- behaviour.

Together with Proposition 3.2 this implies that
B

′
p2[ĉ1] and B

′
sup2 are nonconflicting, and, hence,

(c̃2, a1, a2)|[0,k] ∈ (B
′
p2[ĉ1] ∩ B

′
sup2)|[0,k]. There-

fore we can pick (c̃′
2, a′

1, a′
2) ∈ B

′
p2[ĉ1] ∩ B

′
sup2

with (c̃′
2, a′

1, a′
2)|[0,k] = (c̃2, a1, a2)|[0,k]. In partic-

ular, we have (ĉ1, c̃′
2, a′

1, a′
2) ∈ Bp and (c̃′

2, a′
2) ∈

Bsup2, and, hence, (ĉ1, a′
1) ∈ Bp1[Bsup2]. Observe

a′
1|[0,k] = a1|[0,k] = ã1|[0,k], concluding the proof

that Bp1[Bsup2] is nonanticipating. �

It is tempting to directly use synthesis procedures
that address the ordinary supervisor control problem
to solve the decentralised version. However, this
will in general not result in a supervisor Bsup that
can be decomposed in the required fashion Bsup =

Bsup1 ×π Bsup2. The following general property of
solutions to a synthesis problem will play a key role
in the deduction of a solution procedure for the de-
centralised case: roughly speaking, a supervisor is
a subset of its specification if the specification only
restricts the plant input.

Proposition 5.5. Let Bsup be a complete solution
to the control problem (Bp, Bspec). If Bp ⊆ W

�
0 ,

W = Win × Wout, is a complete I/- behaviour and if
Bspec = U × W

�
0

out , U ⊆ W
�

0
in , then Bsup ⊆ Bspec.

Proof. If Bsup = ∅ then the claim is trivially true.
For the case of Bsup 6= ∅, we provide a proof by
contradiction. Let (c, a) ∈ Bsup \ Bspec. Since
the input of Bp is free and since Bsup is generi-

cally implementable, we can pick a0 ∈ W
�

0
out with

(c, a0)|[0,0] ∈ Bp|[0,0] ∩ Bsup|[0,0]. We inductively
construct a sequence (aκ)κ∈

�
0 with

(i) aκ+1|[0,κ] = aκ |[0,κ], and
(ii) (c, aκ)|[0,κ] ∈ Bp|[0,κ] ∩ Bsup|[0,κ],

for all κ . Suppose we are given aκ with (i) and
(ii). From (ii) we can pick (c̃κ+1, ãκ+1) ∈ Bp

with (c̃κ+1, ãκ+1)|[0,κ] = (c, aκ)|[0,κ]. Using the I/-

property of Bp, we derive existence of an aκ+1 with
(i) and (c, aκ+1) ∈ Bp. From (ii) and generic im-
plementability of Bsup we obtain (c, aκ+1)|[0,κ+1] ∈

Bsup|[0,κ+1], concluding the iterative construction.
Property (i) ensures that the sequence converges
pointwise to a limit a∞ ∈ W

�
0

out . From (ii) and
the completeness hypothesis, we obtain (c, a∞) ∈

Bp ∩ Bsup. Clearly, (c, a∞) 6∈ Bspec, and this con-
tradicts with Bsup to solve (Bp, Bspec). �

We conclude this section with the following theo-
rem that provides a solution procedure to the decen-
tralised control problem:

Theorem 5.6. Given a decentralised control prob-
lem (Bp, Bspec1, Bspec2), where the plant Bp is a
complete I/- behaviour, let:

(i) B
′
spec2 � Pin1Bspec2 × W

�
0

out2 ;
(ii) Bsup1 solve (Bp1[B′

spec2], Bspec1) ;
(iii) Bsup2 solve (Bp2[Bsup1], Bspec2) .

If both Bsup1 and Bsup2 are nontrivial and complete,
and if Bp1[Bsup2] and Bp2[Bsup1] are complete,
then Bsup1 ×π Bsup2 solves (Bp, Bspec1, Bspec2).

Proof. Clearly, Bspec2 ⊆ B
′
spec2. Hence,

Bsup2 solves (Bp2[Bsup1], B
′
spec2). We ap-

ply Proposition 5.5 to the control problem
(Bp2[Bsup1], B

′
spec2) and obtain Bsup2 ⊆ B

′
spec2.

Hence, Bp1[Bsup2] ⊆ Bp1[B′
spec2]. Using

Proposition 5.4 and Theorem 3.3, this im-
plies that Bsup1 solves (Bp1[Bsup2], Bspec1).
Now pick any overall closed-loop trajectory
w = (w1, w2)π ∈ Bp ∩ (Bsup1 ×π Bsup2) and
observe w1 ∈ Bp1[Bsup2] ∩ Bsup1 ⊆ Bspec1 and
w2 ∈ Bp2[Bsup1] ∩ Bsup2 ⊆ Bspec2. Hence,
w ∈ Bspec1 ×π Bspec2. This shows that Bsup

enforces the specification. Since completeness is
retained under the cross product, we obtain from
Proposition 5.2 admissibility of Bsup w.r.t. Bp. �

6 Conclusions

We have addressed the problem of supervisory con-
troller synthesis for continuous plants with a discrete
event interface, using results from earlier work in
which we have shown that this class of problems can
be treated by a plant abstraction step and an adaption

of known results from DES theory. The distinguish-
ing feature of our setting is an input/output structure
based on product composition of the respective com-
ponents. This is the normal case for continuous con-
trol systems and, hence, it is well motivated by the
considered class of plant models. The present paper
continues this line of thought in a discussion of mod-
ular and decentralised supervision of continuous sys-
tems. Our results demonstrate that not only the most
fundamental DES techniques can be put to use in a
hybrid systems context, but also that more advanced
principles can provide a rich source of inspiration for
discrete control of continuous systems.

Acknowledgements. This work has benefited from
discussions with J.M. Davoren and B.D.O. Anderson
(RSISE, Australian National University).

References
[1] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-

H. Ho. Hybrid automata: an algorithmic approach
to the specification and verification of hybrid sys-
tems. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems IV, LNCS 736,
pages 209–229. Springer-Verlag, 1993.

[2] Y.-L. Cheng, S. Lafortune, and F. Lin. Incremental
model evolution and reusability of supervisors for
discrete event systems. Automatica, 36:243–259,
2000.

[3] X. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D.
Lemmon. Supervisory control of hybrid systems.
Proceedings of the IEEE, 88:1026–1049, July 2000.

[4] S.-H. Lee and K.C. Wong. Decentralised control of
concurrent discrete-event systems with non-prefix
closed local specification. In IEEE Proc. of the 36th
International Conference on Decision and Control,
pages 2958–2963, 1997.

[5] T. Moor. Approximationsbasierter Entwurf
diskreter Steuerungen für gemischtwertige Regel-
strecken, volume 2 of Forschungsberichte aus dem
Max-Planck-Institut für Dynamik komplexer tech-
nischer Systeme. Shaker-Verlag, Aachen, Germany,
2000. Also PhD thesis, Fachbereich Elektrotechnik,
Universität der Bundeswehr Hamburg.

[6] T. Moor, J.M. Davoren, and B.D.O. Anderson. Ro-
bust hybrid control from a behavioural perspective.
Technical report, RSISE, Australian National Uni-
versity, 2002. Submitted for publication.

[7] T. Moor, J.M. Davoren, and J. Raisch. Modular su-
pervisory control of a class of hybrid systems in a
behavioural framework. In Proceedings of the Eu-
ropean Control Conference 2001, pages 870–875,
Porto, Portugal, 2001.

[8] T. Moor and J. Raisch. Supervisory control of hy-
brid systems within a behavioural framework. Sys-
tems and Control Letters, 38:157–166, 1999.

[9] T. Moor, J. Raisch, and J.M. Davoren. Computa-
tional advantages of a two-level hybrid control ar-
chitecture. In IEEE Proc. of the 40th International
Conference on Decision and Control, pages 358–
362, 2001.

[10] T. Moor, J. Raisch, and S.D. O’Young. Discrete
supervisory control of hybrid systems based on l-
complete approximations. Journal of Discrete Event
Dynamic Systems, 12:83–107, 2002.

[11] J. Raisch and S.D. O’Young. Discrete approxima-
tion and supervisory control of continuous systems.
IEEE Transactions on Automatic Control, Special
issue on hybrid systems, 43:569–573, 1998.

[12] P.J. Ramadge and W.M. Wonham. The control of
discrete event systems. Proceedings of the IEEE,
77:81–98, 1989.

[13] P.J. Ramadge and W.M. Wonham. Modular control
of discrete event systems. Maths. of Control, Signals
& Systems, 1:1:13–30, 1989.

[14] K. Rudie and W.M. Wonham. Think globally, act
locally: decentralized supervisory control. IEEE
Transactions on Automatic Control, 37:11:1692–
1708, 1992.

[15] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon. In-
terface and controller design for hybrid systems. In
P.J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
editors, Hybrid Systems II, LNCS 999, pages 462–
492. Springer-Verlag, 1995.

[16] J.C. Willems. Models for dynamics. Dynamics Re-
ported, 2:172–269, 1989.

[17] J.C. Willems. Paradigms and puzzles in the theory
of dynamic systems. IEEE Transactions on Auto-
matic Control, 36:258–294, 1991.

[18] W.M. Wonham. Notes on control of discrete event
systems. Technical report, Department of Electri-
cal & Computer Engineering, University of Toronto,
1999.

[19] T. Yoo and S. Lafortune. New results on decentral-
ized supervisory control of discrete-event systems.
In IEEE Proc. of the 39th International Conference
on Decision and Control, pages 1–6, 2000.

