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Abstract. The contribution treats the estimation of a robust region of attraction for non-
linear closed loop systems with structured uncertainties. For this goal a piecewise constant
parameter dependent Lyapunov function is constructed. The latter is based on dividing the
uncertainty bounding set into a finite number of partitions, yielding a common Lyapunov
function for each partition. A numerical example is provided.
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1. INTRODUCTION

There are many basic issues concerned with the prob-
lem of stabilizing nonlinear systems with parametric
uncertainty (e. g. see [13] and [10]). Relatively little
attention has been devoted to the estimation of a robust
region of attraction for such systems in the closed-loop
situation. Although such an analysis may be very use-
ful in many practical applications. This contribution
addresses an uncertain time invariant nonlinear sys-
tems ẋ = A(q) x + f(q, x) with a locally stable equi-
librium at 0, where a robust region of attraction GΩ

is to be determined: GΩ is requested to be a neigh-
borhood of 0, such that any solution with initial state
x(0) ∈ GΩ converges to 0 for every fixed q from the
set of parameters Ω. The problem is treated in litera-
ture by both approaches via common Lyapunov func-
tions (see [3], [12] and [11]) and parameter dependent
Lyapunov functions (see [2], [8], [1] and [5]). Of-
ten a parameter dependent Lyapunov function is ad-
vantageous since it happens that an uncertain system
is robustly stable while no common Lyapunov func-
tion exists (see the example in [9]). However, our ap-
proach settles in between these two methods, propos-
ing piecewise constant parameter dependent Lyapunov
functions to determine a robust region of attraction.
For this goal a continuous parameter dependent Lya-
punov function is approximated by a piecewise con-
stant parameter dependent Lyapunov function, deter-
mined from the system’s linearization A. Therefore
the considered radius formula for a region of attraction

has to be evaluated for a finite number of parameter
values only. This results in the proposed method being
implemented as a computer program in a straight for-
ward manner.

2. SYSTEM CLASS

We start of from the linearization about a known equi-
librium of an uncertain time invariant system: Let

A :
� m →

� n×n , f :
� m ×

� n →
� n . (1)

The system then is represented by the parameter de-
pendent differential equation

ẋ(t) = A(q) x(t) + f(q, x(t)) . (2)

Here q denotes the uncertain parameter, only known
to be valued within an uncertainty bounding set Ω ⊂

� m. For the scope of this paper the following restric-
tions are made on the system class:

(A1) f(q0, · ) is locally Lipschitz for every fixed
q0 ∈ Ω (i. e. the Lipschitz constant may depend
on q0).

(A2) For every bounded subset Ω− of Ω and every
ε > 0 there exists a δ(Ω−, ε) > 0 such that the
following condition holds for all q0 ∈ Ω− and
all ξ ∈

� n, ξ 6= 0, ||ξ||2 < δ(Ω−, ε) :

||f(q0, ξ)||2 ||ξ||
−1
2 < ε .



Here || · ||2 denotes the Euclidean vector norm.

(A3) A is an affine map, i. e. the map

H :
� m →

� n×n, η 7→ A(η) −A(0) ,

is linear.

(A4) A(q0) is stable for all q0 ∈ Ω. That is

σ(A(q0)) ⊂
� − ∀ q0 ∈ Ω ,

where σ(A(q0)) denotes the set of eigenvalues
of A(q0) and

� − is the open left half plane of
�

.

(A5) Ω is compact.

Roughly speaking, (A2) demands f to contain no lin-
ear terms. Indeed for subsets Ω− = {q0} holding
only one parameter value q0 ∈ Ω, assumption (A2)
is fulfilled when A and f are established by standard
linearization about an equilibrium point. Then the re-
strictive aspect of (A2) is that we demand uniformity
w. r. t. the parameter. Such a situation is given when a
suitable δ({q0}, ε) can be established, depending con-
tinuously on q0 for all fixed ε > 0. Furthermore (A2)
is not only meant to be an assumption of existence: In
order to apply the proposed method δ(Ω−, ε) has to
be known for the case that Ω− is a cube.

Note that (A3) also covers the situation when the lin-
ear term is a so called interval matrix. Therefore set
m = n2 and define Ω to be the product of the desired
intervals. Then let A(q0), q0 ∈ Ω, denote the matrix
holding the entries of the vector q after a suitable rear-
rangement. This clearly yields an affine map A.

We state some basic properties immediately implied
by (A1) to (A5):

(P1) For every fixed q ∈ Ω the right hand side of
the differential equation (2) is locally Lipschitz.
Hence for every pair (q, x0) ∈ Ω ×

� n the
equation (2) together with the initial condition
x(0) = x0 has an unique solution in some
neighborhood of x0. Let

T+(q, x0) = [0, t+(q, x0)) ⊆
� +

0 ,

t+(q, x0) ∈
� +

0 ∪ {∞}

denote the maximal interval on the time axis,
to which the solution can be extended uniquely.
Further let

ϕ(q, x0, · ) : T+ →
� n

denote the solution itself.

(P2) A(η) = A(η0) + H(η − η0) for all η, η0 in Ω.

(P3) For every fixed q0 ∈ Ω the Lyapunov
equationA(q0)

>P0 + P0 A(q0) = −I , P0 > 0
has an unique solution P0 ∈

� n×n. Therefore
the map P : Ω →

� n×n, η 7→ P (η), is well
defined by

A(η)>P (η) + P (η) A(η) = −I , P (η) > 0 .

It is well known that for any fixed q0 ∈ Ω the map
V (q0, · ) :

� n →
�

, ξ 7→ ξ>P (q0) ξ, is a Lya-
punov function of the system (2) on some neighbor-
hood D(q) ⊆

� n of 0 (see [7], proof of theorem 3.7).
Therefore we call

V : Ω×
� n →

�
, (η, ξ) 7→ ξ>P (η) ξ (3)

a parametric Lyapunov function. Keeping q0 fixed,
according to [7], theorem 3.1, a region of attraction
G(q0) ⊆

� n can be constructed. Let

B(R) � {ξ| ξ ∈
� n, ||ξ||2 ≤ R} (4)

denote the closed ball with center at the origin and ra-
dius R ∈

� +
0 . Then choose a radius R(q0) > 0 by

assumption (A2), such that the following inequality
holds for all ξ ∈ B(R(q0)), ξ 6= 0:

2 ||P (q0)||s ||f(q0, ξ)||2 ||ξ||
−1
2 < 1 . (5)

Here || · ||s denotes the matrix norm induced by the
Euclidean vector norm: ||L||s � sup||x||2=1 ||L x||2.
With

G(q0) � {ξ| V (q0, ξ) ≤ R(q0)
2 λmin[P (q0)]} (6)

the Lyapunov method yields for all x0 ∈ G(q0):

T+(q0, x0) =
� +

0 , (7)

ϕ(q0, x0, t) ∈ G(q0) ∀ t ∈
� +

0 , (8)

lim
t→∞

ϕ(q0, x0, t) = 0 . (9)

Since q ∈ Ω is assumed to be unknown, we look for
a set GΩ ⊆

� n, such that (7) and (9) hold for all
x0 ∈ GΩ and all q0 ∈ Ω. A neighborhood GΩ of 0
with the mentioned properties will be called a robust
region of attraction of the system (2). Of course GΩ

is allowed to depend on Ω, but not on the actual pa-
rameter value q ∈ Ω. Note that we do not demand GΩ

to be invariant. The construction of a robust region of
attraction can be done by intersecting the sets G(q) for
all q ∈ Ω. To become even more explicit, we intersect
the largest balls contained in G(q), as proposed in [5]
and [6]:

r(q) �

R(q) λmax[P (q)]−1/2 λmin[P (q)]1/2 ∈
� + , (10)

GΩ � B( inf
q∈Ω

r(q)) . (11)

Therefore computing GΩ is a minimization problem.
In order to avoid ending up with GΩ = {0}, one



may assume R : Ω →
� + to be continuous, imply-

ing r : Ω →
� + to be continuous too. Furthermore

restrictions on the derivates of r(q) are to be stated.
Since r( · ) involves solving the Lyapunov equation
and computation of eigenvalues, it seems impossible
to verify such restrictions by given f and A. In prac-
tice one will simply ‘solve’ the minimization problem
by evaluating r(q) for an enormous number of param-
eter values q ∈ Ω, still at the risk of missing the worst
case.

In the following sections a method is established in-
volving only a finite number of parameter values. By
this we overcome the above kind of problems, and —
even if R( · ) happens to be discontinuous— a robust
region of attraction can be computed in a reliable man-
ner.

3. ARBITRARY KNOWN PARAMETER

In this section an arbitrary parameter q0 ∈ Ω is fixed.
We are interested in a cube C with center q0 and posi-
tive radius s ∈

� + such that the map V (q0 · ) defined
by (3) is a common Lyapunov function of system (2)
for all q ∈ C. Hereby the following definitions are
used for shortness. Let || · ||∞ denote the maximum
norm, i. e. ||η||∞ � max{|η1|, |η2|, . . . |ηm|} for
η ∈

� m. Then

C(η, s) � {v| v ∈
� m, ||v − η||∞ ≤ s} (12)

denotes the closed cube with center η and radius s.
Further let

V(η, s) � {v| |vi − ζi| = s ∀ 1 ≤ i ≤ m} (13)

denote the vertices of C(η, s).

When as a first step the nonlinearity f is neglected,
the following theorem presents a radius formula for
the cube of interest.

Theorem 1. Let q0 ∈
� m, an affine map A :

� m →
� n×n and α ∈ [0, 1) be given. Assume A(q0) to be
stable. Let H denote the mapping from assumption
(A3) and P (q0) the solution of the Lyapunov equation
as in (P3). Let

s(α, q0) � sup{s| q ∈ C(q0, s) ⇒

A(q)> P (q0) + P (q0) A(q) + α I < 0} . (14)

Then the following equation holds:

s(α, q0) = (1− α) (max{||H(δ)> P (q0) +

P (q0) H(δ)||s| δ ∈ V(0, 1)})−1. (15)

The latter quotient is considered to be∞ whenever the
divisor happens to be 0.

Proof. For shortness let

M(d) � A(q0 + d)>P (q0) + P (q0) A(q0 + d) + α I,

N(d) � H(d)>P (q0) + P (q0) H(d)

for d ∈
� m, hence

M(d) = N(d)− (1− α) I . (16)

Note that N( · ) :
� m →

� n×n is linear. This
implies that max{||N(d)||s| d ∈ V(0, 1)} becomes
zero if and only if N(d) ≡ 0. In this case, equa-
tion (14) yields s(α, q0) = ∞. Therefore only
max{||N(d)||s| d ∈ V(0, 1)} 6= 0 has to be treated
in the following. Now fix an arbitrary radius s ∈

� +
0

and claim:

||N(d)||s < 1− α ∀ d ∈ C(0, s)

⇔ M(d) < 0 ∀ d ∈ C(0, s) . (17)

We prove (17) by first assuming the left hand side to
hold. For an arbitrary d with ||N(d)||s < 1 − α and
an arbitrary ξ ∈

� n \ {0} this yields

ξ>M(d) ξ = ξ>N(d) ξ − (1− α) ||ξ||22

≤ (||N(d)||s − (1− α)) ||ξ||22
< 0 . (18)

Therefore the right hand side of (17) is implied by
the left hand side. Next assume the left hand side of
(17) not to hold. Hence there exists a d0 ∈ C(0, s)
such that ||N(d0)||s ≥ 1 − α. From N( · ) be-
ing linear we obtain N(−d0) = −N(d0) and there-
fore ||N(−d0)||s = ||N(d0)||s ≥ 1 − α. From
both N(d0) and N(−d0) being symmetric we ob-
serve |λmax[N(−d0)]| = |λmax[N(d0)]| ≥ 1 − α.
Hence one of the above eigenvalues is greater or equal
1−α. Without loss of generality we therefore assume
λmax[N(d0)] ≥ 1 − α. For an according eigenvector
v 6= 0 this yields:

v>M(d0) v = v>N(d0) v − (1− α) ||v||22

= (λmax[N(d0)]− (1− α)) ||v||22
≥ 0 . (19)

Hence M(d0) is not negative definite and the right
hand side of (17) is not fulfilled. This completes the
prove of (17). We state another claim:

s < (1− α)( max
d∈V(0, 1)

||N(d)||s)
−1

⇔ ||N(d)||s < (1− α) ∀ d ∈ C(0, s) . (20)

Note that the operator norm || · ||s :
� n×n →

� +
0 is a

convex map. Since N( · ) is linear, ||N( · )||s :
� m →

� +
0 is convex too. Hence on convex hulls of a fi-

nite number of vertices ||N( · )||s becomes maximal



for one of the vertices. This yields

max
d∈C(0, s)

||N(d)||s = s max
d∈C(0, 1)

||N(d)||s

= s max
d∈V(0, 1)

||N(d)||s , (21)

implying (20). From both (17) and (20) and by the
substitution q = q0 + d we observe

M(q − q0) < 0 ∀ q ∈ C(q0, s)

⇔ M(d) < 0 ∀ d ∈ C(0, s)

⇔ s < (1− α)( max
d∈V(0, 1)

||N(d)||s)
−1 . (22)

Therefore the supremum of all s such that

M(q − q0) < 0 ∀ q ∈ C(q0, s) (23)

holds is equal to

(1− α)( max
d∈V(0, 1)

||N(d)||s)
−1 . (24)

This completes the proof of the theorem.
�

In [8] theorem 2.6 the above is stated for the special
case α = 0. For a proof [4] is cited, where an al-
gorithm is given for computing a common Lyapunov
function. Thereby s = s(0, q0) is the maximal radius
such that V (q0, · ) is a Lyapunov function of the lin-
ear system ẋ = A(q) x for all q ∈ C(q0, s). Choosing
the newly introduced design parameter α to be posi-
tive clearly results in a smaller cube. The advantage of
this is, that it allows to discard the nonlinear term f .
The following corollary illustrates this idea.

Corollary 1. Let A, f , Ω, H , P , and V be given ac-
cording to (A1) to (A15), (P3) and (3). For an arbitrary
but fixed α ∈ (0, 1) and q0 ∈ Ω let

Ω(α, q0) � C◦(q0, s(α, q0)) , (25)

where C◦ denotes the inner of the set C. From (A2)
choose a radius R(α, q0) > 0:

R(α, q0) � δ(Ω(α, q0),
1
2 α ||P (q0)||−1

s ) . (26)

Further let

D(α, q0) � B(R(α, q0)) , (27)

G(α, q0) �

{ξ| V (q0, ξ) ≤ R(α, q0)
2 λmin[P (q0)]} . (28)

Then for all q ∈ Ω(α, q0) the following holds:

(i) V (q0, · ) is a Lyapunov function on D(α, q0)
of the system (2).

(ii) G(α, q0) is a invariant region of attraction of the
system (2).

Proof. Since V (q0, · ) is quadratic, we only need
to show that for all q ∈ Ω(α, q0), x0 ∈

� n, t ∈
T+(q, x0) and ϕ(q, x0, t) ∈ D(α, q0) \ {0}

V̇ (q0, ϕ(q, x0, t)) < 0 (29)

holds. By equation (26) observe

2 ||P (q0)||s ||f(q, ξ)||2 ||ξ||
−1
2 ≤ α (30)

for all q ∈ Ω(α, q0) and all ξ ∈ D(α, q0) \ {0}.
Fix arbitrary q, x0 and t from the above and denote
ϕ(q, x0, t) by x. Then the definition of s(α, q0) in
theorem 1 yields

V̇ (q0, x)

= ẋ>P (q0) x + x>P (q0) ẋ

= x>[A(q)>P (q0) + P (q0) A(q)] x

+ 2 x>P (q0) f(q, x)

< − α ||x||22 + 2 ||x||2 ||P (q0)||s ||f(q, x)||2

= − ||x||22 (α− 2 ||x||−1
2 ||P (q0)||s ||f(q, x)||2)

≤ 0 . (31)

This yields (i). For any ξ ∈ G(α, q0) we get

R(α, q0)
2 λmin[P (q0)] ≥ ξ>P (q0) ξ

≥ ||ξ||22 λmin[P (q0)] .

And therefore ξ ∈ D(α, q0), hence G(α, q0) ⊆
D(α, q0). Now (ii) is obtained by the Lyapunov
method. See theorem 3.1 and 3.7 in [7].

�

Remark: From equation (15) we know Ω(α, q0) ↘
{q0} when α ↗ 1. When α1 > α2 in general
R(α1, q0) ≥ R(α2, q0) is expected. Therefore α near
1 is likely to yield a large region of attraction valid for
a small set of parameters Ω(α, q0) —and the contrary
happens when α near 0.

4. UNCERTAIN PARAMETER

Transferring the results of the previous section to the
situation of an uncertain parameter is straight for-
ward. We first assume a finite set of parameter values
q1, . . . , qN ∈ Ω, N ∈ � , to be known, such that
the union of the sets Ω(α, qi), 1 ≤ i ≤ N, is a su-
perset of Ω. Thereby α ∈ (0, 1) is chosen arbitrarily
but fixed. From corollary 1 we construct a piecewise
constant parametric Lyapunov function: Therefore let

Z1 � Ω(α, q1) , (32)

Zi � Ω(α, qi) \ [
⋃

1≤j<i

Zj ] , (33)

and

Vpc(α, Q, η, ξ) �
∑

1≤i≤N

χZi
(η) V (qi, ξ) , (34)

DΩ(α, Q) � B( min
1≤i≤N

R(α, qi)) . (35)



Here χZ denotes the characteristic function of a set Z,
that is χZ(η) = 1 for all η ∈ Z and χZ(η) = 0 far
all η 6∈ Z. Corollary 1 yields that Vpc(α, Q, q, · )
is a Lyapunov function of system (2) on the domain
DΩ(α, Q). Analogous to equation (10)

r(α, qi) �

R(α, qi) λmax[P (qi)]
−1/2 λmin[P (qi)]

1/2 (36)

is the radius of the largest ball within G(α, qi). Let

GΩ(α, Q) � B( min
1≤i≤N

r(α, qi)) . (37)

Note that the above minimum is positive since the
r(α, qi) are. Observe that

G?
Ω(α, Q) � B( max

1≤i≤N
R(α, qi)) (38)

is a superset of G(α, qi) for all i. Hence by corollary 1
it follows for all q ∈ Ω and all x0 ∈ GΩ(α, Q):

T+(q, x0) =
� +

0 , (39)

ϕ(q, x0, t) ∈ G?
Ω(α, Q) ∀ t ∈

� +
0 , (40)

lim
t→∞

ϕ(q, x0, t) = 0 . (41)

This proves G(α, Q) to be a robust region of attrac-
tion of system (2). The following theorem treats the
question on how to construct a finite set of parameter
values Q such that the above can be applied.

Theorem 2. Fix some α ∈ (0, 1) and let (qi)i∈
� be

an infinite sequence of parameter values in Ω. Assume
the set Q = {qi| i ∈ � } to be dense in Ω. Then there
exists an N ∈ � such that

⋃

1≤i≤N

Ω(α, qi) ⊇ Ω . (42)

Proof. Let Ci � C◦(qi, s(α, qi)) for all i ∈ � . Ob-
serve from eq. (15) that the map s(α, · ) is continuous
on Ω. By assumption (A5) Ω is compact. This im-
plies s(α, η0) = infη∈Ω s(α, η) � smin(α) for some
η0 ∈ Ω. Observe s(α, · ) to be positive on Ω, hence
smin(α) > 0. Now fix an arbitrary q ∈ Ω. From Q

being dense in Ω we know a qi ∈ Ω to exist, such
that ||q − qi||∞ < smin(α). Therefore ∪i∈

� Ci ⊇ Ω.
Again from Ω being compact we can choose a fi-
nite number of sets Ci1 , . . . CiJ

, J ∈ � , such that
∪j≤J Cij

⊇ Ω. This completes the proof.
�

Whenever a countable dense set of parameter values is
known, by the above theorem an algorithm can be set
up in order to determine a suitable finite set of param-
eter values. For the case of Ω being a polyrectangular
with dimension m, we present such an algorithm in ex-
plicit form. Choose a fix design parameter α ∈ (0, 1)
and run algorithm S:

(S1) Assign i← 0.

(S2) Assign i ← i + 1 and Q ← 1
2i

� m ∩ Ω,
where 1

2i

� m � { 1
2i z| z ∈

� m} denotes
the rectangular grid with distance 1

2i be-
tween the grid points along the axis.

(S3) If Q = ∅ go to step (S2).

(S4) If minη∈Q s(α, η) ≤ 2−i go to step (S2)
else terminate.

The algorithm terminates after a finite number of steps,
because: (i) Assuming the polyrectangular Ω to be of
dimension m implies the condition in (S3) to be not
fulfilled for all i greater than a certain i0 ∈ � . (ii)
From the proof of theorem 2 s(α, η) is known to be
greater than smin(α) > 0 for all η ∈ Ω. Hence for
certain i1 ∈ � 0 the condition in (S4) is not fulfilled.
After having terminated, clearly Q holds a finite num-
ber of parameter values such that ∪η∈QΩ(α, η) is a
superset of Ω.

5. EXAMPLE

Consider the uncertain second order system given by
the differential equation (2) when n = m = 2 and

A

([

q1

q2

])

�

[

−q1 1
0 −q2

]

, (43)

f

([

q1

q2

]

,

[

x1

x2

])

�

[

0
(q1 − 1)(x1x2)

3

]

. (44)

As the uncertainty bounding set we choose

Ω = [1, 2]× [1, 2] ⊂
� 2 . (45)

Then for all x, q ∈
� 2

||f(q, x)||2 ≤
|q1 − 1|

8
(||x||2)

6 (46)

holds. Of course, finding a suitable boundary for the
nonlinear term f remains a crucial task and has to be
done individually for every application. Now set up δ

according to assumption (A2) by

δ(C(q, s), ε) � 5

√

8 ε (q1 + s− 1)−1 , (47)

where q ∈ Ω, s ∈
� +. Clearly assumptions (A1)

to (A5) are fulfilled by the above. Therefore running
algorithm S for any fixed α ∈ (0, 1) yields a finite
set Q of parameter values. The number of param-
eter values (denoted by |Q|) is listed in table 1 for
α ∈ {0.3, 0.5, 0.7, 0.9}.

Table 1. Results of algoritm S.
α 0.3 0.5 0.7 0.9
|Q| 25 25 81 1089
r 0.709 0.786 0.840 0.884



To establish a region of attraction set R( · ) as in equa-
tion (26):

R (α, q) �

5

√

4 α (q1 + s(α, q)− 1)−1(||P (q)||s)−1 (48)

for α ∈ (0, 1) and q ∈ Ω. Computing r(α, q) is then
done by applying the formula given in section 4. The
minimum r of the radii r(α, q) over all q in Q then
represents G(α, Q), which is a robust region of attrac-
tion. Again see table 1 for numerical results. The dark
grey ball in fig. 1 represents G(α, Q) at α = 0.9. The
light grey area is an estimation of the actual robust
region of attraction, established by numericly solving
the differential equation for 1600 initial conditions and
25 parameter values each.
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Fig. 1. Robust region of attraction.

6. CONCLUSIONS

Since the proposed method is based on discarding the
nonlinear term f , a restrictive robust region of attrac-
tion is expected. At least when the nonlinearity has
relevant influence on the dynamics within the actual
region of attraction. In those cases it will be more ap-
propriate to find a Lyapunov function corresponding
to the nonlinearity’s structure. However, often such
a Lyapunov function is not known, hence there is no
alternative to shaping the nonlinearity.

The construction of the robust region of attraction
GΩ(α, Q) is done very much like GΩ in [5], roughly
stated in section 2 for easy reference. From approxi-
mating a parameter dependent Lyapunov function by a
piecewise constant one, as a main advantage intersect-
ing a infinite number of sets is avoided. Therefore we
achieve a reliable result by a finite procedure. When
choosing the design parameter α near 1, an enormous
number of parameter values Q is expected to be com-
puted, ending up in GΩ(α, Q) ≈ GΩ.
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