Fault-Tolerant Control of Discrete Event Systems
based on Fault-Accommodating Models

Thomas Wittmann * Jan Richter ** Thomas Moor *

* Lehrstuhl fiir Regelungstechnik, Friedrich-Alexander Universitdit
Erlangen-Niirnberg, Cauerstrafie 7, 91058 Erlangen,
lrt@rt.eei.uni-erlangen.de
** Siemens AG, Industry Sector, Gleiwitzer Str. 555, 90475 Nuremberg

Abstract: Fault-tolerant control systems with discrete-event dynamics allow for differing sets of
design requirements, that specify the system’s behaviour during nominal operation and in the case of
component degradation or component malfunction. This paper is concerned with the design of fault-
tolerant control algorithms for discrete event systems in the framework of supervisory control theory.
Its main contribution is a modelling framework that describes the evolution of systems which are
potentially subject to faults. These models are called fault-accommodating models. Within this context,
the occurrence of faults is modelled by means of unobservable and uncontrollable events. Hence, the
design problem of fault-tolerant controllers is transformed to a supervisory control problem under partial
observation. Consequently, there is no need for explicitly diagnosing the occurrence of faults and relaxed
diagnosability conditions are applied. Finally, the paper provides extensive examples in order to illustrate
the application of all derived methodological results. All computations needed for controller design and

system analysis were implemented using a freely available software toolbox.

Keywords: discrete-event systems, supervisory control, fault-tolerant systems, applications and

faul-tolerant control

1. INTRODUCTION

A discrete event system is called fault-tolerant if it satisfies
suitable, but not necessarily identical specifications both before
and after the occurrence of faults. This paper is concerned with
the design of fault-tolerant control algorithms in the framework
of supervisory control theory. Therein, it is possible to formally
analyse the plant dynamics as well as the dynamics of the
closed loop system. Especially the guaranteed fulfilment of a
given safety specification is of special interest w.r.t. the design
of fault-tolerant control systems.

The main contribution of this paper is a modelling framework
for systems subject to spontaneously occurring faults, that al-
lows for the transformation of the fault-tolerant control prob-
lem to a standard supervisory control problem. We introduce
a model class that makes the logical order of nominal events
and fault events, together with information on the fault’s im-
pact, available for controller design. Solving a standard prob-
lem from supervisory control theory supersedes the need for
a diagnoser as well as the need for a switching mechanism,
that handles the changeover from the nominal control policy to
the control policy in the presence of faults. Furthermore, well-
known algorithms can be used to solve the fault-tolerant control
problem at hand.

An approach to fault-tolerant supervisory control based on the
concept of stability and language-convergence is presented in
[Wen et al., 2008]. Therein, a system is called fault-tolerant,
if its behaviour converges towards the nominal behaviour in
a finite number of steps. Hence, only faults whose impact is
reversible after a finite number of events are considered.

Faults can be interpreted as model uncertainties, thus methods
from robust control (see Bourdon et al. [2005], Takai [2000],
Cury and Krogh [1999], Lin [1993]) can be used to compute
fault-tolerant controllers. In the context of discrete event sys-
tems, uncertainties are respected by a family of possible plant
models. Each member of this family that represents a defective
plant behaviour, models the impact of the fault at hand, but not
its previous history. That is, spontaneously occurring faults are
not considered. In [Park and Lim, 1999] an approach to robust
control is extended by dividing strings into either tolerable or
non-tolerable strings.

In [Paoli et al., 2008] the fault-tolerant control design problem
for discrete event systems is solved using a three-step algo-
rithm. It includes the detection of faults before the nominal
design requirements are violated, stopping the system after the
diagnosis of a fault and enforcing a different specification on
the defective system. The existence of the proposed algorithm
is subject to diagnosability conditions based on the results re-
ported in [Sampath et al., 1995] and controllability conditions
that claim a possible controller intervention, before the system
exhibits some forbidden behaviour. Its implementation is based
on a diagnoser and a set of pre-computed controllers. After the
diagnosis of a fault, the nominal supervisor is disabled and
replaced by a supervisor that was designed according to the
fault at hand. Besides the aforementioned restrictions, an ad-
ditional switching mechanism is needed to choose a supervisor
according to the diagnosed fault and to synchronise the chosen
supervisor with the plant’s current state. Paoli’s approach is
settled in the framework presented in [Blanke et al., 2010] and
categorised as an active approach to fault-tolerant control.

According to the classification as stated in [Blanke et al., 2010]
the approach presented in this paper is an active approach, since
the behaviour of the closed-loop system changes according
to the occurred fault. Note that the concept of fault accom-
modation proposed in [Blanke et al., 2010] is not related to
the approach presented in this paper. The structure of fault-
accommodating models is closely related to Paoli’s approach.
However, an explicit fault-diagnosis or synchronisation mech-
anism is avoided. Example 6 shows that restrictions, imposed
by the use of a diagnoser or switching conditions are con-
siderably relaxed. Similar to approaches from robust control,
the fault impacts are modelled separately. Whereas in robust
control each fault impact is covered by a separate model, the
presented approach differentiates only the nominal behaviour
and the behaviour of the defective plant. Furthermore, fault-
accommodating models account for spontaneously occurring
faults. In contrast to approaches based on state stability and
language convergence, in this paper the defective plant is not re-
quired to eventually comply with the nominal plant behaviour.

The main part of this article is organised as follows. Sec-
tion 2 provides some basic notations around formal languages
and automata. In addition, selected basic concepts from super-
visory control are recalled. Thereafter, the concept of fault-
tolerant control of discrete event systems based on fault-
accommodating models is introduced in Section 3. Section 4
provides an application example from the field of manufactur-
ing automation. Finally, some concluding remarks are stated.

2. PRELIMINARIES

This section recalls basic notations and concepts from formal
languages and supervisory control theory, see [Ramadge and
Wonham, 1987, 1989, Wonham, 2009].

2.1 Formal Languages and Automata

An alphabet ¥ is a finite set of events 6. Let X* denote the
Kleene closure over X. Elements s € £* are termed strings. By
definition X* includes the empty string €. Given strings r,s,1,
the concatenation of r and ¢t is denoted by r¢. Any string r such
that there exists a t € £* with rt = s is called a prefix of s.

A formal language L C X* is a subset of X*. Its prefix-closure
L={reX*| (3t eX*)[rt € L]} contains all sequences, which
are prefixes of strings in L. A formal language L with L = L is
called prefix-closed. Given formal languages L and K, the set
L—K:={seL|(s¢K)} denotes the language-difference.
A language L € ¥* is called regular if it is built upon regular
expressions. Every regular language is recognised by a finite
automaton and vice versa.

A finite automaton G is a tuple (Q,X,8,q0,Om), with the state
set O, the alphabet X, the transition function §: (Q xX) —
0, the initial state gy and the set of marked states O, C Q.
Note that & is a partial function. In addition the transition
function can recursively be extended to strings. Therefore,
let 8(go,€) = qo denote the beginning of the recursion. For
any string s € L(G), 0 € X set 3(qo,s0) := 8(8(qo,5),0).
An automaton’s generated language is defined according to
L(G)={s€X*| (g€ Q)[d(q0,s) =q] and L, (G) :={s €
2| (39 € Om)[0(qo,s) = ¢q] denotes the automaton’s marked
language. The dynamics or behaviour of discrete-event systems
modelled by a finite automaton is given by means of the marked
language.

2.2 Supervisory Control

Given is an alphabet ¥, partitioned according to the control-
lability and observabiltity attributes of the contained events,
hence £ = ¥, U Xy and £ = £, U Xy,. Furthermore X, C X,
is required to hold.

The natural projection p, : ¥* — Xi X, C X is recursively
defined. Let p,(c) =€ if 6 ¢ X, and p,(G) = & otherwise,
then define p,(€) = € and note that p,(s6) = p,(s)p,(0)
holds for an arbitrary string s € ¥*. The inverse natural pro-
jection is given according to p; ' : Zf — 2% pl(s) = {r €
X* | po(#) = s}. The natural projection can be extended to
languages, in compliance to p,, : 2* — 2% p (L) = {r € X |
(Ise€L)[p,(s)=r]}andp; ' :2% = 2% p l(L)={scX*|
Po(s) €L}

A supervisor,is amap S: L — T := {ye X | Xy C v}, where
I" is the set of all control patterns. For brevity S/ L denotes the
set of all strings contained in L, that are compatible with S. A
supervisor is called nonblocking w.r.t. L if S/ L = S/ L, feasible
if (Vs,s" € L)[pys = po,s = S(s) = S(s")], and admissible if
S/LC Land (Vs,s')[s€S/L&s € LNS/L&p,s' =p,s=5 €
S/L].

A nonblocking, feasible and admissible supervisor disables
only controllable events, does not prevent the plant from reach-
ing its markings and the occurrence of unobservable events
does not influence the supervisor’s decision on which events
are permissible and which are not. Furthermore two under ob-
servation equal strings, are accepted if they are both marked
w.r.t. the plant.

Given two languages L,K € X* and let p, denote the natural
projection of X onto X, then K is relatively closed w.r.t. to L if
K =KnNL, K is controllable w.rt. L and X if KXy N\L C K
and K is normal w.r.t. L and p, if K =LNp; ' (p,K).

In [Ramadge and Wonham, 1989] it is shown that there exists
a nonblocking, feasible and admissible supervisor S for L such
that S/L = K if K is controllable w.r.t. L and Xy, K is relatively
closed w.r.t. L and K is normal w.r.t. L and p,,.

It can be shown that the set of all controllable, normal and
relatively closed sublanguages exposes a unique supremal ele-
ment, which serves as a basis for the realisation of a minimally
restrictive supervisor.

3. FAULT-TOLERANT CONTROL BASED ON
FAULT-ACCOMMODATING MODELS

This section introduces faults as uncontrollable and unobserv-
able events. A fault-accommodating behaviour is formally de-
fined as a language that accounts for the nominal behaviour and
the defective behaviour. The nominal behaviour and the defec-
tive behaviour need to be consistent with regard to the past of
an occurred fault. Hence criteria for a proper changeover from
the nominal behaviour to the defective behaviour are presented.
Finally, the fault-tolerant control problem is stated and reduced
to a supervisory control problem under partial observation.

3.1 Fault Concept

This paper focuses on spontaneously occurring, permanent
faults (see Blanke et al. [2010]), hence there exists an instant

of time at which the fault occurs and the fault is not reversible.
Faults can be neither triggered nor detected by the controller.
Therefore, the occurrence of faults is modelled by uncontrol-
lable and unobservable events. Throughout the paper, we as-
sume that a fault occurs only once.

Given the nominal alphabet Iy, let F ¢ XN denote a distin-
guishable fault event and write ¥ = ENU{F} for the overall
alphabet ¥. Note that, regarding the common partition of X
according to the events’ controllability attributes and observ-
ability attributes, the fault F' is considered neither controllable
nor observable, that is F' € X, N Xyo.

3.2 Fault-Accommodating Models

Fault-accommodating models are intended to formalise the log-
ical order of nominal events and faults. They are based on
the nominal behaviour Ly C XY and the defective behaviour
Lp C X* of a given system. The nominal behaviour represents
the dynamical laws that govern the system in fault-free oper-
ation, whereas the defective behaviour covers a fault’s previ-
ous history and its consequences for the system’s subsequent
behaviour. A proper fault-accommodating model includes only
faults whose previous history complies with the nominal system
dynamics.

Definition 1. Let Ly C X denote a nominal behaviour and
Lp C X* a defective behaviour, respectively, where £ = Xy U
{F} and F is a fault. The fault-accommodating model is a pair
(LN, Lp). The fault-accommodating model (Ly, Lp) is proper
if

LpNZy CIn (1

and
Lp ﬂZ{; ClLN. 2)
Od

A fault-accommodating behaviour Lpy C X* is required to
account for the nominal behaviour and the defective behaviour,
therefore, a natural candidate is the conjunction

Lpa = ILNULp. 3)
Provided that a fault-accommodating plant model
(LN, Lp) is proper, Lga can be interpreted as the nominal be-
haviour with optional changeover to the defective behaviour
after the occurrence of the fault F.
Proposition 2. Let (Ln,Lp) denote a proper
fault-accommodating model, then

LFA:LNU(EFZ*OLD). 4)

Proof. We first derive
Lp C INFX ULy (5)

from Def. 1, Egs. (1) and (2). Pick any s € Lp. Case that s
consists of nominal events only, that is s € XY, Eq. (2) implies
s € Ly. Case that s includes a fault event, that is s ¢ L%, we
decompose s such that s = rFt, with r € Xy and r € £*. In
particular, s € Lp implies r € Lp and by Eq. (1) € Ln. Thus
s =rFt € LNFX* U Ly. This completes the proof of Eq. (5) and
we obtain Eq. (4) as follows:

Lpa =ILNULp =

LNU(EFZ*QLD).

The following example illustrates the construction of a fault-
accommodating plant behaviour.

Example 3. Simple machine - modelling

A simple machine is capable of producing two different prod-
ucts A and B. The subordinate process is subject to faults.
In faulty operation, starting the production cycle A results in
a product B or has no effect at all. All relevant events are
summarised in Table 3.

Tab 1. Physical meaning of events

C: controllable, O: observable

Event | Interpretation Attributes
a start process A C 0

b start process B C,0

A process A successfully finished | C, O

B process B successfully finished | O

o start subordinate process (6]

B subordinate process finished (6]

Figure 1 shows a model of the nominal behaviour, whereas
Fig. 2 shows the defective behaviour.

Fig. 2. Defective behaviour

Since the fault-accommodating model (Ly,Lp) is proper and
Ln C Lp, the fault-accommodating behaviour Lgs, computed
according to Eq. (4), is given by the defective behaviour. O

A system which is subject to multiple faults that do not depend
on each other can be modelled by the union of all related fault-
accommodating behaviours. The system’s malfunctions can be
regarded as isolated incidents and, hence, from the view of
the modeller, can be distinguished from each other. However,
fault labels are rather a modelling tool to set up the defective
behaviour of the plant, than a differing criteria. Hence, only a
single fault event is needed to indicate that the nominal plant
model does not apply any more.

3.3 Fault-Tolerant Control

The occurrence of a fault is not observable, and hence the
information whether the system complies with its nominal
dynamical laws or not cannot be explicitly incorporated in
control decisions. Since fault-accommodating models provide
information on the logical order of nominal events and faults
and information on the fault impact, it is sufficient to distinguish
between strings that include a fault and those that consist of

nominal events only. In particular, an exact characterisation of
the fault using a diagnoser is not needed to ensure a desired
behaviour during faulty operation. Instead, the specification
requirements can be formalised using fault-accommodating
models.

Consider a plant, whose dynamics is represented via the fault-
accommodating model (L, Lp), where Ly C Y.\, accounts for
the plants nominal behaviour and Lp C £* models the plant’s
defective behaviour.

The nominal acceptable behaviour Ex C XY, restricts the nom-
inal plant’s behaviour and the defective acceptable behaviour
Ep narrows the plant’s operation in the case of faults. Given
a proper fault-accommodating model (Ex, Ep), the acceptable
behaviour Eo C X* can be written as

EA:ENU(?NFZ*OED), (6)
according to Prop. 2.
A supervisor that restricts the plant’s fault-accommodating

behaviour to the acceptable plant behaviour is called fault-
tolerant.

Definition 4. Consider the fault-accommodating models (L, Lp)

and (En, Ep), where (Ly, Lp) models the plant behaviour and
(EN, Ep) represents the design requirements. Further, Lga and
E denote the fault-accommodating behaviour according to Eq.
(4) associated with the fault-accommodating models (Ln,Lp)
and (EN,Ep), respectively. A supervisor S is called fault-
tolerant if

S/Lga € Ea @)
holds. O

Definition 5 states the fault-tolerant control problem and de-
clares its solution.

Definition 5. A fault-tolerant control problem is a pair
((Ln,Lp),(En,Ep)) with the fault-accommodating models
(Ln,Lp) and (En,Ep). A solution to the fault-tolerant control
problem is a non-empty formal language K C X* with

o KCE)p

e K is controllable w.r.t. Lga and X
e K is relatively closed w.r.t. Lga

e K is normal w.r.t. Lpa and p,

O

Given a solution K to the fault-tolerant control problem
((Ln,Lp), (En,Ep)), the existence of a nonblocking, feasible,
admissible and fault-tolerant supervisor S such that S/ Lpa = K
is provided by [Ramadge and Wonham, 1989].

The implementation of fault-tolerant controllers as proposed in
[Paoli et al., 2008], is simplified to the effect that there is no
need for a diagnoser nor a supervisor switching mechanism.
Furthermore, no additional tools for system analysis and control
design need to be developed, since well-known algorithms (see
libFAUDES [2006-2011]) for the solution of the supervisory
control problem under partial observation can be reused.

The paper’s main result, the construction of fault-tolerant super-
visors for plants modelled by means of fault-accommodating
models, is summarised in Procedure 1.

Example 6. Simple machine - supervisor design

Reconsider the simple machine from Ex. 3. The following
safety requirements are imposed on the closed-loop behaviour.

Procedure 1. Computation of fault-tolerant supervisors
1: Set up the nominal model Ly.
2: Determine possible faults and set up the plant’s defective
behaviour Lp.
3: Compute the fault-accommodating model Lga according to
Eq. (4).
4: Set up the nominal acceptable behaviour Ey.
Determine the defective plant’s acceptable behaviour Ep.
6: Compute the plant’s acceptable behaviour Ep according to
Eq. (6).
7. Compute the supremal controllable, normal and relatively
closed sublanguage of Lpa NEa.

o

O

(1) During nominal operation, the machine executes the pro-
duction cycles A and B alternating and in this order.

(2) A fault occurs after the process A was started.

(3) After a fault has occurred, starting the process A is forbid-
den.

Figure 3 shows the acceptable nominal behaviour of the sim-
ple machine and the acceptable defective behaviour is shown
in Fig. 4. Since the acceptable defective behaviour is proper
and Ex C Ep holds, the acceptable behaviour is given by the
acceptable defective behaviour. Note that technically all events
in X — {A,B} are added by self-loops in every state of Fig. 3
and the event a is added in Fig. 4, respectively.

¥O=20 H

Fig. 3. Acceptable nominal
behaviour Ex

Fig. 4. Acceptable defective
behaviour Ep

The supremal controllable and normal sublanguage of the ac-
ceptable behaviour w.r.t. the plant’s fault-accommodating be-
haviour and the controllable and observable events, respec-
tively, can be computed using standard algorithms implemented
in [libFAUDES, 2006-2011]. The result and its projection onto
the observable events is shown in Figures 5 and 6.

F
H@\Q}@

Fig. 5. Closed-loop system behaviour

Note that the closed-loop system is neither language diagnos-
able nor event diagnosable (Yoo and Garcia [2008]) w.r.t. to
the nominal plant model. However, a fault-tolerant supervisor
exists. O

O30
o« B
. a B A /2 b

Fig. 6. Projection of closed-loop system to observable events

4. APPLICATION TO WORKPIECE FLOW CONTROL

This section provides the outline of an application example. Its
implementation has been carried out and tested at a test facility
of the Siemens AG.

A common situation in manufacturing automation is the
collision-free control of a transportation system. Consider two
conveyer belts, that merge into a single downstream segment as
shown in Fig. 7.

merge point

(]

SE
O—» O

area of interest

o sTPI

Fig. 7. The plant’s physical layout

The conveyer belts are assumed to move at a fix speed and a
change in direction is not possible. Besides the conveyer belts,
the system possesses two stopper elements, STP1 and STP2,
each one equipped with a sensor, SE1 and SE2, respectively.
Stoppers are devices designed to subdivide a flow of work-
pieces, such that each workpiece can be treated independently.
Possible collisions take place in the so-called merge point. Ad-
ditionally, another sensor SE is located after the merge point.

Concerning fault-tolerant control, the plant is equipped with a
redundant timer and the distance from STP2 to the merge point
is assumed to be shorter than the distance from STP1 to the
merge point.

System information can be extracted by evaluating the sensor
states, and controller intervention is restricted to opening and
closing the stoppers. After workpieces have reached the area of
interest, controller actions have no impact on their movement,
therefore, the controller’s main task is the coordination of the
workpiece entrance in the area of interest.

For simplicity only STP1 is subject to potential faults. A fault
occurs, if STP1 becomes stuck in its open position. Its at-
tributive sensor is taken to be functional in the presence of
faults. Hence, STP1 is no longer available for active control
intervention, but can still be used for sensor data aggregation.

4.1 Plant Model

A. Stopper Model

The arrival of a workpiece at a stopper can be detected (arrive)
by a sensor, attached to the stopper. Initially, the stopper is in
a blocking state and an incoming workpiece is precluded from
passing by. After a workpiece has been detected, the stopper is
capable of either keeping the workpiece blocked, or opening up
(deblock) and this way letting the workpiece pass. The deblock-
event is associated with the stopper’s complete opening and
closing procedure. After the stopper has opened up, some time
passes (fau) before the current workpiece passes by (pass) the
stopper. A formal model for STP1 is shown in Fig. 8.

. deblock_1 @

arrive_1

@ pass_1 .

Fig. 8. Nominal stopper model

After the occurrence of a fault, the stopper’s dynamics is no
longer affected by the event deblock. A possible model for the
stopper’s defective behaviour is shown in Fig. 9. Note that Fig.
9 already shows the fault-accommodating behaviour computed

according to Eq. (4).
arrive_ l \

pass_1

deblock 1

arrive_1

*)
pass_1

Fig. 9. Fault-accommodating stopper model

B. Sensor Model

The remaining sensor SE will solely report the detection of a
workpiece (se). Fig. 10 shows the associated model.

C. Timer Model

The timer needs to elapse after the amount of time that is needed
by a workpiece to travel from the broken stopper to the sensor
SE. It is reset each time a workpiece passes STP1.

no

Fig. 11. Timer model

pass_1

20

Fig. 10. Sensor model

Table 4.1 summarises the introduced events, their physical
meaning and the attributes associated with them.

4.2 Controller Design

The specification in Fig. 12 requires that if a workpiece has
passed a stopper, the entrance of another workpiece in the area

Tab. 2 Physical meaning of events
C: controllable, O: observable, F: forcible

Event Interpretation Attributes
arrive workpiece detected at stopper C,0
deblock stopper performs open-close cycle C,0
pass workpiece passed the stopper o

tau passing of time C,0,F

t start timer (0]

e timer elapses O

se workpiece detected at sensor SE O

F fault

of interest is prevented until the sensor SE has detected the
arrival of the workpiece. Note that technically all events in X —
{pass_1,pass_2,se} are accounted for by self-loops in every
state but omitted for clarity in the graphical representation.

se
—>
pass_1
Fig. 12. Nominal safety specification

Once stopper STP1 is defective, the demanded safety needs
might not be satisfied any more and the specification needs to
be altered according to the fault’s impact. Since STP2 is closer
to the merge point than STP1, collisions can still be avoided by
blocking all workpieces at STP2 at least for the period of time
a workpiece needs to travel from STP1 to the merge point. This
period of time is measured by the timer shown in Fig. 11. Since
the timer serves as an indicator for a free area of intereset, the
timer needs to be reset each time a workpiece passes the broken
stopper. The automaton representation of the specification for
the defective plant is shown in Fig. 13. Again all events in
Y — {pass_1,pass_2,se,e,F} are accounted for by self-loops
in every state, but omitted for clarity.

se,pass_1

Fig. 13. A specification for the defective plant

The supremal normal and controllable sublanguage of the ac-
ceptable behaviour w.r.t. the plant’s fault-accommodating be-
haviour and the controllable and observable events is non-
empty and leads to a feasible controller implementation with-
out the realisation of a diagnoser. Further, this implementation
is guaranteed to respect the given design requirements under
partial observation as well as the controller’s restrictions w.r.t.
the events’ controllability properties. Computing this language
using algorithms implemented in the software package [lib-
FAUDES, 2006-2011] is straightforward. An automaton real-
isation for the fault-accommodating model exposes 63 states,
five states for the specification and 81 states for the supervi-
sor. This example will be available for download in form of a
libfaudes Lua-Extension (see libFAUDES [2006-2011]) by the
release-time of this paper.

5. CONCLUSION

The paper’s main contribution is a modelling framework that
accounts for the logical order of nominal events and faults. Its
main result, the design of fault-tolerant supervisors for fault-
accommodating models, is summarised in Procedure 1. These
controllers can be implemented without an additional diagnosis
tool or a switching mechanism. Since the fault-tolerant con-
troller design problem is transformed to a standard supervi-
sory control problem under partial observation, fault-tolerant
supervisors for fault-accommodating models can be computed
using well-known algorithms. Besides academic examples, a
feasible application example from manufacturing automation is
provided.

REFERENCES

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diag-
nosis and Fault-Tolerant Control. Springer, 2010.

S.E. Bourdon, M. Lawford, and W.M. Wonham. Robust
nonblocking supervisory control of discrete-event systems.
IEEE Transactions of Automatic Control, 50(12):2015-2021,
2005.

JEER. Cury and B.H. Krogh. Robustness of supervisors for
discrete-event systems. IEEE Transactions of Automatic
Control, 44(2):376-379, 1999.

libFAUDES. Software library for discrete-event sys-
tems, 2006-2011. Available at http://www.rt.eei.uni-
erlangen.de/FGdes/faudes/index.html.

F. Lin. Robust and adaptive supervisory control of discrete
event systems. IEEE Transactions of Automatic Control, 38
(12):1848-1852, 1993.

A. Paoli, M. Sartini, and S. Lafortune. A fault tolerant archi-
tecture for supervisory control of discrete event systems. In
Proceedings of the 17th IFAC world congress. Seoul. Korea.,
pages 6542-6547, 2008.

S.-J. Park and J.-T. Lim. Fault-tolerant robust supervisor
for discrete event systems with model uncertainty and its
application to a workcell. IEEE Transactions on Robotics
and Automation, 15(2):386-391, 1999.

PJ. Ramadge and W.M. Wonham. Supervisory control of a
class of discrete event processes. SIAM J. Control and
Optimization, 25(1):206-230, 1987.

P.J. Ramadge and W.M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81-98, 1989.

M. Sampath, R. Sengupta, and S. Lafortune. Diagnosability
of discrete event systems. [EEE Transactions on Automatic
Control, 40(9):1555-1575, 1995.

S. Takai. Robust supervisory control of a class of timed discrete
event systems under partial observation. Systems and Control
Letters, 39(4):267 — 273, 2000.

Q. Wen, R. Kumar, J. Huang, and H. Liu. A framework
for fault-tolerant control for discrete event systems. [EEE
Transactions on Automatic Control, 53(8):1839-1849, 2008.

W.M. Wonham. Supervisory control of discrete event systems.
Monograph, 2009.

T.-S. Yoo and H.E. Garcia. Diagnosis of behaviors of interest
in partially-observed discrete-event systems. Systems and
Control Letters, 57(12):1023 — 1029, 2008.

