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Abstract: This paper develops a hierarchical control architecture for so calledsequential behaviours, i.e.
for plant dynamics and specifications that are represented as formal languages of infinite-length words.
Our main result is the elaboration of structural propertiesthat (a) allow for abstraction based controller
design and that (b) are preserved under closed-loop composition. Thus, we propose to alternate controller
design, closed-loop composition and abstraction in order to construct a hierarchical control system.
Technically, our results are based on a variation of input-output systems as introduced by Willems
(1991), with a particular focus onliveness properties, i.e., sequential behaviours that are not necessarily
topologically closed.
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1. INTRODUCTION

It is common engineering practice to address complex control
problems by a hierarchical system design. In the context of
supervisory control (Ramadge and Wonham, 1989), this prin-
ciple has been formalized from a variety of perspectives, see
e.g. Zhong and Wonham (1990); Wong and Wonham (1996);
da Cunha et al. (2002); Leduc et al. (2005); Schmidt et al.
(2008). In contrast to monolithic approaches, the benefits in-
clude not only a systematic derivation of adequate models for
the individual levels of abstraction, but also computational fea-
sibility for large scale systems.

In this paper, we further develop a hierarchical control architec-
ture that was originally presented to address a class of hybrid
systems (Moor et al., 2003) and subsequently discussed for
discrete event systems (Perk et al., 2006). For each individual
level of the hierarchy, it is proposed to design a controllerac-
cording to a language inclusion specification. Regarding safety
properties, one may base the design on an abstraction of the
levels below, i.e., on a superset language that accounts forany
trajectory the lower levels can evolve on. Clearly, an already
available abstraction is the specification used for the design
of the level below. Computational benefits are expected from
alternating abstraction and controller synthesis, since the speci-
fication does not need to express how the control objective is
achieved. This has been demonstrated by a transport system
example in (Perk et al., 2008).

Regarding liveness properties, the situation is more involved
than for safety properties. Here, (Moor et al., 2003; Perk etal.,
2006) refer to a variation of input-output systems proposedby
Willems (1991) in order to obtain a nonblocking closed-loop
configuration as a structural liveness property. i.e., expressed
independently of the particular plant dynamics. This setting ap-
pears to be a natural choice for the hybrid systems discussedin
(Moor et al., 2003). However, more general liveness properties
can be expressed by languages of infinite-length words, also
known assequential behavioursor ω-languages. Examples of
liveness properties include eventual task completion or even-

tual feedback to a server of any individual one of a number
of clients. The correspondingω-languages share the technical
property that they are nottopologically closed. While the lit-
erature on supervisory control commonly represents relevant
dynamics as∗-languages, the core results are also available for
ω-languages (Ramadge, 1989; Kumar et al., 1992; Thistle and
Wonham, 1994), including the situation of partial observation
(Thistle and Lamouchi, 2009) and abstraction based controller
design (Moor et al., 2011). However, hierarchical control has
not yet been addressed explicitly for generalω-languages.

In this paper, we extend the approach from (Moor et al., 2003)
to the situation of not necessarily topologically closedω-
languages. While (Moor et al., 2003) is set within the frame-
work of Willems’ behavioural systems theory, and, thus, for-
mally usesω-languages to represent behaviours, it effectively
requires plant and controller to be topologically closed, and,
thus, excludes liveness properties other than a nonblocking
closed-loop. Similarly, (Perk et al., 2006) models system com-
ponents by prefix-closed∗-languages, which exhibit a topolog-
ically closed limit, and, thus, can not represent general liveness
properties. Conceptually, the current contribution stillrefers to
a notion ofnon-anticipating input-output systemsto achieve a
nonblocking closed-loop configuration. However, we impose
no further constraints regarding liveness properties possessed
by the plant or required by the specification.

This paper is organized as follows. Section 2 introduces nota-
tion, recalls well-known facts and establishes required lemmas
regarding formal languages. Section 3 discusses a closed-loop
configuration with external signals and characterizes admissible
controllers in terms of achievable closed-loop behaviour.Sec-
tion 4 shows that relevant plant properties are retained under
closed-loop composition, and, thereby, establishes a hierarchi-
cal control architecture.

2. PRELIMINARIES

For afinite alphabetΣ, theKleene-closureΣ∗ is the set of finite
stringss=σ1σ2 · · ·σn, n∈N, σi ∈Σ, including theempty string



ε ∈ Σ∗, ε 6∈ Σ. If for two stringss, r ∈ Σ∗ there existst ∈ Σ∗ such
thats= rt , we sayr is aprefixof s, and writer ≤ s. If r 6= s, we
sayr is astrict prefixof sand writer < s. A ∗-languageoverΣ is
a subsetL ⊆ Σ∗. Theprefix-closure(or shortclosure) of L ⊆ Σ∗

is defined by preL := {r | ∃s∈ L : r ≤ s} ⊆ Σ∗. A language
L⊆ Σ∗ is calledclosed, if L= preL. GivenL, K ⊆ Σ∗, we sayK
is relatively closed w.r.t. Lif K = preK∩L. The closure operator
distributes over arbitrary unions of languages. However, for the
intersection of two languagesL, K ⊆ Σ∗, we have pre(L∩K)⊆
(preL)∩ (preK), and, if equality holds,L andK are said to be
non-conflicting. A ∗-languageK is said to becomplete, if for
all s∈ preK there existsσ ∈ Σ such thatsσ ∈ preK.

The natural projectionpo : Σ∗ → Σ∗
o, Σo ⊆ Σ, is defined iter-

atively for s∈ Σ∗, σ ∈ Σ: (1) poε = ε, (2a) po(sσ) = po(s)σ
if σ ∈ Σo, and (2b) po(sσ) = po(s) if σ 6∈ Σo. The set-valued
inverse p−1

o is defined by p−1
o (r) := {s∈ Σ∗ | po(s) = r } for

r ∈ Σ∗
o. When extended to languages, the projection distributes

over unions, and the inverse projection distributes over unions
and intersections. Furthermore, the closure operator commutes
with projection and inverse projection. GivenL, K ⊆ Σ∗, and
a set of uncontrollable eventsΣuc ⊆ Σ, we sayK is control-
lable w.r.t. (Σuc, L), if ((preK)Σuc) ∩ (preL) ⊆ preK. Given
L, K ⊆ Σ∗, and a set of observable eventsΣo ⊆ Σ, we say
K is normal w.r.t. (Σo, L), if preK = (p−1

o popreK)∩ (preL).
Controllability, normality, completeness, prefix-closedness and
relative closedness are retained under arbitrary union.

An infinite stringoverΣ is defined as a functionw : N→ Σ. By
Σω := {w | w : N→ Σ} we denote the set of all infinite strings
overΣ. A monotone sequence of strings, denoted by(sn)⊆ Σ∗,
is a sequence(sn)n∈N, sn ∈ Σ∗, sn ≤ sn+1 for all n∈ N. We call
(sn) unbounded if|sn| is unbounded. The point-wiselimit of a
monotone sequence(sn) is denoted by lim(sn) ∈ Σ∗ ∪Σω . An
ω-languageis a subsetL ⊆ Σω and we denoteω-languages by
calligraphic letters, in contrast to∗-languages. Theprefixof an
ω-language is defined by preL := {s∈ Σ∗ | ∃w ∈ L : s< w}.
The prefix ofw∈ L with lengthn∈N is denotedwn ∈ Σ∗.

The prefix of anyω-language is complete and the prefix op-
erator distributes over arbitrary unions ofω-languages. How-
ever, for the intersection of twoω-languagesL,K ⊆ Σω , we
have pre(L∩K) ⊆ (preL) ∩ (preK), and, if equality holds,
the languages are said to benon-conflicting. The languages
L, K ⊆ Σω are locally non-conflictingif (preL) ∩ (preK)
is complete. For a languageL ⊆ Σ∗, the limit is defined by
lim L := {lim (sn) | (sn) ⊆ L}∩Σω . Note that pre limL = L, iff
L is complete and prefix-closed. Hence, prelimpreL= preL.

Lemma 1. Given the languagesL, K ⊆ Σ∗, with K = preK,
then lim(L∩K) = (lim L)∩ (lim K).

Proof. (⊆): We pick w ∈ lim (L ∩ K). Then, there exists a
monotone and unbounded (m.u.) sequence(sn) ∈ L and(sn) ∈
K. Further,w = lim (sn) ∈ lim L and w ∈ lim K. Thus, w ∈
lim L∩ lim K. (⊇): We pickw∈ lim L ∩ lim K and observe that
for anywn ∈ L we havewn ∈ K, for all n∈ N, sinceK = preK.
Thus,wn ∈ L∩K, andw= lim (wn) ∈ lim (L∩K). 2

The topological closure(or shortclosure) of an ω-language
L ⊆ Σω is defined by cloL := limpreL. An ω-language is
said to beclosed if cloL = L. The limit of a prefix-closed
∗-language is topologically closed. Given twoω-languages
L, K ⊆ Σω , we say, thatK is relatively closed w.r.t.L, if
K = (cloK) ∩L. The closure operator distributes over finite
unions ofω-languages, see e.g. (Ramadge, 1989).

Let (sn) ⊆ Σ∗ be a strictly monotone sequence of prefixes of
a stringw ∈ Σω . We define thenatural projection for infinite
stringsby pω

o w := lim (posn) for w∈Σω ,n∈N, Σo ⊆Σ. The set-
valued inverse is defined by p−ω

o (v) := { w∈ Σω | pω
o (w) = v }

for s∈ Σ∗
o∪Σω

o . When extended toω-languages, the projection
distributes over unions, the inverse projection over unions and
intersections. Both commute with the prefix operator.
Lemma 2. Given the alphabetsΣ, Σo ⊆ Σ and the languages
L = preL ⊆ Σ∗, Lo ⊆ Σ∗

o andLo ⊆ Σω
o , then it is

(i) (pω
o lim L)∩Σω

o = limpoL,
(ii) p−ω

o lim Lo = (limp−1
o Lo)∩ (p−ω

o Σω
o ),

(iii) clop−ω
o Lo = (p−ω

o cloLo) ∪ (p−ω
o preLo).

Proof. Ad (i) (⊆): We pick w ∈ (pω
o lim L)∩Σω

o . There exists
v ∈ lim L s.t. (pω

o v)∩ Σω
o = w. Hence, there exists a m.u. se-

quence(posn) ∈ poL such thatw = lim (posn) = pω
o v. Thus,

w = lim(posn) ∈ limpoL. (⊇) : We pick w ∈ limpoL ⊆ Σω
o .

There exists a m.u. sequence(sn) ⊆ poL, s.t. lim(sn)∩ Σω =
lim (sn)∩Σω

o = w. SinceL is prefix-closed, we can pick a m.u.
sequence(rn) ⊆ L such that(porn) = (sn). We denote its limit
byv := lim (rn)⊆ lim L⊆Σω . Observe that p−ω

o v= lim (porn)⊆
pω

o lim L. Thus,w= lim (porn)∩Σω
o ⊆ (p−ω

o lim L)∩Σω
o .

Ad (ii) (⊆) : We pick w ∈ p−ω
o lim Lo ⊆ p−ω

o Σω
o . Then, pωo w ∈

lim Lo, i.e. we can pick a m.u. sequence(posn)⊆ Lo and observe
that(sn)⊆ p−1

o Lo. Hence,w= lim (sn)∈ (limp−1
o Lo)∩(p−ω

o Σω
o ).

(⊇) : We pickw∈ (limp−1
o Lo) ∩ (p−ω

o Σω
o ). There exists a m.u.

sequence(sn) ⊆ p−1
o Lo, with lim (sn)∩ (p−ω

o Σω
o ) = w. The se-

quence (posn)⊆ Lo is also m.u., since in the case of a bounded
sequence, we must havew= suwith u∈ (Σ−Σo)

ω . In particu-
lar w /∈ p−ω

o Σω
o . We denote its limit byv := lim (posn)⊆ lim Lo ⊆

Σω
o and observe that pω

o w= v. Hence,w⊆ p−ω
o lim Lo.

Ad (iii) (⊆): We pick w ∈ clop−ω
o Lo. Then, there exists a

m.u. sequence(sn) ∈ p−1
o preLo such that lim(sn) = w and

(posn) ∈ preLo. Case that(posn) is a bounded sequence, then
lim(pown) = pω

o w ∈ preLo and w ∈ p−ω
o preLo. Otherwise,

lim(posn) ∈ cloLo andw ∈ p−ω
o cloLo. (⊇): (1) We pickw ∈

p−ω
o cloLo. Then, there exists a m.u. sequence(posn) ∈ preLo

and(sn) ⊆ prep−ω
o Lo. Thus,w = lim(sn) ∈ clop−ω

o Lo. (2) We
pick w ∈ p−ω

o preLo. Then, there existss ∈ preLo such that
pω

o w = s, i.e. there exists a m.u. sequence(sn) ⊆ p−1
o s ⊆

p−1
o preLo = prep−ω

o Lo andw= lim(sn) ∈ clop−ω
o Lo. 2

Forω-languages, we use the same definition ofω-controllability
as in (Moor et al., 2011): givenΣuc⊆Σ andL,H⊆Σω . Then,H
is said to beω-controllablew.r.t. (Σuc, L) if for all s∈ (preL)∩
(preH) there exists aVs ⊆ L∩H with s∈ preVs, and

(i) preVs is controllable w.r.t. preL, and
(ii) Vs is relatively topologically closed w.r.t.L.

For H ⊆ L, our notion ofω-controllability is equivalent to
ω-controllability as introduced by Thistle and Wonham (1994).
Addressing situations whereH is not necessarily a subset ofL,
our notion ofω-controllability implies thatL andH are non-
conflicting. Furthermore,ω-controllability is preserved under
arbitrary union, see (Moor et al., 2011). GivenL, K⊆Σω , and a
set of observable eventsΣo ⊆Σ, we say thatK is ω-normal w.r.t.
(Σo, L), if K = (p−ω

o pω
o K)∩L, see e.g. (Kumar et al., 1992).

Lemma 3. Let K be rel. closed w.r.t.L ⊆ Σω andΣo ⊆ Σ, then
K is ω-normal w.r.t.(Σo,L) if preK is normal w.r.t. (Σo, preL).

Proof. K= (cloK)∩L= (lim ((p−1
o popreK)∩ (preL)))∩L=

(limprep−ω
o pω

o K) ∩ (limpreL) ∩ L = (clop−ω
o pω

o K) ∩ L ⊇
(p−ω

o pω
o K) ∩ L ⊇K. Equality implies thatK is ω-normal. 2



3. CLOSED-LOOP WITH EXTERNAL SIGNALS

The closed-loop configuration under consideration consists of
a controller component, a plant component, and three ports
for system interconnection; see Figure 1, on the left. The
motivation of explicitly addressing external interactionis to
specify the relationship between internal and external behaviour
as a formal requirement for the controller design.

Each of the three ports is realized by synchronization of alter-
nating input-events and output-events, from alphabets denoted
U− andY−, respectively. As in (Moor et al., 2011; Perk et al.,
2006), this particular form of system interconnection refers to
the notion of input-output systems from Willems (1991) and
is a crucial prerequisite for our results on abstraction based
controller design in Section 4.

UeUe YeYe

UpYp

UcUc YcYc

ControllerH

PlantL

SpecificationE⇔

Fig. 1. Closed-loop configuration

Internally, the plant and the controller synchronize alternat-
ing symbols fromΣp = Up ∪̇Yp, and, thus, form a closed-loop
configuration, similar to the common setting of sampled data
continuous control systems. Furthermore, the controller inter-
acts with a high-level operator, while the plant is synchronized
with a low-level environment. We take the perspective that the
operator seeks to affect the environment according to high-level
commands fromUc. The controller is meant to implement each
high-level command on the plant by applying suitable events
from Up, while monitoring the plant responses ranging inYp.
Eventually, the controller shall provide a high-level feedback
event fromYc to the operator, in order to receive the subsequent
high-level command. A specification referring to the overall
alphabet is meant to relate high-level events fromΣc = Uc ∪̇Yc
to low-level events fromΣe = Ue∪̇Ye, and, thereby, formally
define the consequences of high-level commands; see also Fig-
ure 1, to the right.

For the further discussion, we summarize the relevant parame-
ters as acontrol problemand subsequently introduce conditions
and requirements to characterize acceptablesolutions.
Definition 4. A control problemconsists of

Σ := Σp ∪̇Σe∪̇Σc, the overall alphabet,
Σc :=Uc ∪̇Yc, thehigh-level control events,
Σp :=Up ∪̇Yp, theinternal plant events,
Σe :=Ue∪̇Ye, theenvironment events,
L ⊆ (Σp ∪̇Σe)

ω , theplant behaviour, and
E ⊆ Σω , thespecification.

Throughout this paper, the individual alphabets are obvious
from the context and we concisely refer to the control problem
by (Σ,L,E). Furthermore, we denote

Σpe := Σp ∪̇Σe, theplant alphabet,
Σcp := Σc ∪̇Σp, thecontroller alphabet,
Σce := Σc ∪̇Σe, theexternal alphabet,
Σuc :=Uc ∪̇Yp ∪̇Σe, theuncontrollable events, and
Σo := Σc ∪̇Σp, theobservable events.

Projections from strings or infinite strings overΣ, are denoted
p− and pω−, respectively, with a subscript to indicate the respec-
tive range; e.g., ppe for the projection fromΣ∗ to Σ∗

pe.

3.1 Plant properties

For the intended interpretation of inputs and outputs, the plant
behaviourL ⊆ Σω

pe must exhibit alternating input and output
events, and accept any input event from the controller and from
the environment. For the acceptance of input events, we refer to
the notion of a locally free input; see also (Perk et al., 2006).

Definition 5. For a languageL ⊆ Σ∗, the alphabetU ⊆ Σ is a
locally free inputif

(∀s∈ Σ∗,µ ,µ ′ ∈U) [sµ ∈ preL ⇒ sµ ′ ∈ preL ] .

Formally, we require the plant behaviour to possess the below
properties P1 and P2 and refer toL as anIO-plant.

P1 L⊆ ((YpUp)
∗(YeUe)

∗)ω ⊆ Σω
pe.

P2 preL possesses locally free inputsUp andUe.

For the subsequent discussion, it turns out convenient to raise
L ⊆ Σω

pe to the overall alphabetΣ, and to consider

LΣ := p−ω
pe (L ∪ preL)∩clo(((Yp(YcUc)

∗Up)
∗ (YeUe)

∗ )ω )

as thefull plant behaviour. The particular construction ensures
that the inverse projection does not introduce artificial liveness
properties while enforcing the intended event order. Moreover,
if L is an IO-plant, thenLΣ possesses locally free inputsUc,
Up ∪̇Yc andUe by construction.

3.2 Specification properties

The main purpose of the language inclusion specification
E ⊆ Σω is to relate external to internal signals. However, for the
hierarchical control architecture in Section 4, we also require
that the external closed-loop behaviour again possesses the
plant properties P1 and P2. In particular, the external closed-
loop must persistently provide high-level feedback ranging in
Yc and it must accept any external input events fromUc andUe.
Technically, theIO-specificationE must satisfy E1 and E2:

E1 E ⊆ (((YpUp)
∗ (YeUe)

∗ )∗ (Yp(YcUc)
+Up))

ω .
E2 preE possesses locally free inputsUc andUe.

3.3 Solution to the control problem

Given a control problem(Σ, L, E) with an IO-plantL and an
IO-specificationE , consider a candidate controllerH ⊆ Σω

cp.
For convenience, we writeHΣ := p−ω

cp H⊆ Σω for the controller
behaviour w.r.t. the overall alphabet. ForH to be asolution
to the control problem, it must enforce the specification and
satisfy the controllability condition w.r.t. the plant behaviour.
Formally, we impose the following conditions C1 and C2.

C1 H enforces the specificationE , i.e.,LΣ ∩HΣ ⊆ E .
C2 HΣ is ω-controllable w.r.t.(Σuc, LΣ).

Note that C2 implies thatLΣ andHΣ are non-conflicting. More-
over, by C1 and E1, we obtain thefull closed-loop behaviour

K := L ‖ H := (p−ω
peL) ∩ (p−ω

cp H) = LΣ ∩HΣ .

Thus, the closed-loop interconnection of the plantL with the
controllerH is non-blocking.



3.4 Closed-loop properties

This subsection relates solutions of the control problem to
properties of the full closed-loop behaviour.

Proposition 6. If H is a solution to the control problem
(Σ, L, E), whereL is an IO-plant, then the full closed-loop
behaviourK = LΣ ∩HΣ satisfies K1–K5:

K1 K enforces the specificationE , i.e.,K ⊆ E ,
K2 K is ω-controllable w.r.t.(Σuc, LΣ),
K3 K is ω-normal w.r.t.(Σo, LΣ),
K4 preK is normal w.r.t.(Σo,preLΣ),
K5 preK possesses locally free inputsUc andUe.

Proof. K1 and K2 are immediate consequences of C1 and C2,
respectively. Regarding K3 observe that

K ⊆ (p−ω
cp pω

cpK)∩LΣ = (p−ω
cp pω

cp(HΣ ∩LΣ))∩LΣ ⊆

(p−ω
cp pω

cpp
−ω
cp H)∩ (p−ω

cp pω
cpLΣ)∩LΣ =HΣ ∩LΣ =K.

K4 is obtained by

preK ⊆ (p−1
cppcppreK)∩ (preLΣ) =

(p−1
cppcppre(HΣ ∩LΣ))∩ (preLΣ)⊆

(p−1
cppcppreHΣ)∩ (p−1

cppcppreLΣ)∩ (preLΣ) =

(preHΣ)∩ (preLΣ) = pre(HΣ ∩LΣ) = preK.

For the penultimate equality, recall that C2 implies thatLΣ and
HΣ are non-conflicting. Regarding K5, we picks, r ∈ preK,
µ , µ ′ ∈Ue, andν, ν ′ ∈Uc, such thatsµ ∈ preK andrν ∈ preK.
Observe thatsµ , rν ∈ preK ⊆ preLΣ. According to P2 it
follows thatsµ ′ ∈ preLΣ. Furthermore, the locally free input
Uc of preLΣ implies thatsν ′ ∈ preLΣ. Fromω-controllability
of HΣ w.r.t. (Σuc, LΣ) ands, r ∈ preHΣ follows thatsµ ′, rν ′ ∈
preHΣ. Recall again thatLΣ and HΣ are non-conflicting, to
obtainsµ ′, rν ′ ∈ (preLΣ)∩ (preHΣ) = preK. 2

3.5 Controller synthesis

Vice versa, anyω-language that satisfies properties K1–K4 can
be shown to be a solution to the control problem.

Proposition 7. Given a control problem(Σ, L, E), consider any
closed-loop candidateK ⊆ Σω . If K satisfies K1–K4, then, the
controllerH= pω

cpK solves(Σ, L, E).

Proof. According to K1 and K3, we have thatLΣ ∩HΣ = LΣ ∩
(p−ω

cp pω
cpK) = K ⊆ E andH satisfies C1. To establish C2, pick

an arbitrarys ∈ (preLΣ) ∩ (prep−ω
cp pω

cpK). By K4, we obtain
s ∈ preK. According to K2, we can chooseVs ⊆ LΣ ∩K ⊆
LΣ ∩HΣ such thats∈ preVs, and preVs is controllable w.r.t.
(Σuc, preLΣ), and,Vs is relatively closed w.r.t.LΣ. Hence,HΣ
is ω-controllable and satisfies C2. 2

As a consequence of the above two propositions and in compli-
ance to common approaches in supervisory control, solutions
to a control problem can be obtained from the supremal closed-
loop behaviour, as characterized by K1–K4.

If L andE can be represented by limits of regular∗-languages,
and, if E is relatively topologically closed w.r.t.L, then, the
results presented by (Moor et al., 2012) can be utilized to obtain
a practical solution to the control problem(Σ,L,E). Referring
to the discussion in Section 6, (Moor et al., 2012), the following
proposition gives a representation of the supremal solution H⇑

of the control problem(Σ,L,E):

Proposition 8. Given a control problem(Σ,L,E), represented
byLΣ = lim LΣ, E = lim E, whereLΣ,E ⊆ Σ∗ are complete,E =
(cloE)∩L, andE = (preE)∩L, for anyK ⊆ Σ∗ that satisfies
the requirements (L1)–(L5) given in (Moor et al., 2012), the
controllerH= pω

cp lim K solves(Σ,L,E). ForH↑ := pω
cp lim K↑,

whereK↑ denotes the supremal solution w.r.t. (L1)–(L5), we
haveL ‖ H↑ = L ‖ H⇑.

Proof. To prove the first part, we show, thatK= lim K satisfies
K1–K4. Regarding K1, observe that by L4 limK ⊆ lim E =
lim((preE)∩LΣ) = (cloE)∩LΣ = E . Regarding K2, we pickK
as candidateVs and observe that controllability of preK follows
from L2. Relative closedness is given by L5, since limK =
lim(preK∩LΣ) = (cloK)∩LΣ. Thus, K2 is satisfied. Regarding
K3 and K4, observe, that normality of preK w.r.t. (Σo,preLΣ)
follows from L3. Normality ofK is given by relative closedness
of K w.r.t. LΣ and K4. By Proposition 7,H = pω

cp lim K solves
(Σ,L,E). Regarding supremality, note thatLΣ ‖ H↑ = LΣ ∩
(p−ω

cp limK⇑) ⊆ LΣ ‖ H⇑, sinceH↑ solves(Σ,L,E). We prove
the reverse direction byL ‖ H ⊆ LΣ ∩ (clo(L ‖ H)) = LΣ ∩
clo limK = lim LΣ∩ limpreK = lim(LΣ∩preK)= lim K. Hence,
lim K↑ = L ‖ H↑ ⊆ L ‖H⇑ ⊆ lim K↑, andL ‖ H↑ = L ‖ H⇑. 2

Future work focuses on the development of algorithms for
the case of more general specifications, which is still an open
question. See also (Thistle and Wonham, 1994; Thistle and
Lamouchi, 2009) and the literature cited therein.

4. HIERARCHICAL CONTROLLER DESIGN

Consider a control problem(Σ, L, E), a solutionH and the full
closed-loop behaviourK = LΣ ∩HΣ. Theexternal closed-loop
behaviourLH := pω

ceK can again be interpreted as a plant. Thus,
given a specificationEH, we obtain another control problem
(ΣH, LH, EH). Provided we find a solutionHH, we end up with
a hierarchical control architecture; see Figure 2, to the right.

   ⇒⇒⇒

UeUeUeUe YeYeYeYe

KK

YcYcYc Yc UcUcUc Uc

YH
cYH

c UH
cUH

c

IO-PlantLIO-PlantL

ControllerHControllerH

ControllerHH ControllerHH

SpecificationESpecificationE

Fig. 2. Abstraction based hierarchical controller design

Rather than to solve(ΣH, LH, EH) directly, we propose to use
the specification pωceE as an abstraction of the plant behaviour
LH; see again Figure 2. SinceK⊆E impliesLH = pω

ceK⊆ pω
ceE ,

solutionsHH of (ΣH, pω
ceE , E

H) are readily observed to also
satisfy C1 for the actual control problem(ΣH, LH, EH). In
contrast to the actual closed-loopK, the specificationE does
not express how the control objective is achieved and, hence, is
expected to be considerably less complex.

However, the proposed approach raises two questions.

◦ Are the plant properties P1 and P2 ofL retained under
closed-loop composition and, thus, also satisfied byLH?

◦ Can we guarantee that the solutions of(ΣH, pω
ceE , E

H) also
solve the actual problem(ΣH, LH, EH), i.e., possess both
properties C1 and C2?

We provide affirmative answers to both questions.



4.1 Non-anticipating IO-plant

In (Moor et al., 2011), it has been shown that locally free inputs,
as imposed by P2, do in general not imply a non-blocking
closed-loop for an abstraction based controller design. More
specifically, the cited paper elaborates a variation of Willems’
notion of non-anticipating input-output systems as a sufficient
structural plant property for a non-blocking closed-loop.Based
on these considerations, we impose the additional requirement
P3 onL and refer to the plant as anon-anticipating IO-plant.

P3 L is ω-controllable w.r.t.(Up ∪̇Ue, cloL).

While P2 requires the plant to accept any input locally, P3
requires that the liveness properties possessed by the plant may
at no instance of time restrict the input in its infinite future; see
Moor et al. (2011) for a detailed discussion of P3, including
examples. The following two propositions draw conclusions
from P3 regarding the full plant behaviour and the closed-loop
behaviour, respectively.

Proposition 9. If L is a non-anticipating IO-plant, thenLΣ is
ω-controllable w.r.t.(Σc ∪̇Up ∪̇Ue, cloLΣ).

Proof. From the definition ofLΣ, we note that preLΣ ⊆
pre(p−ω

pe (L∪ preL)) = p−1
pepreL. Pick an arbitrary strings ∈

preLΣ, let r := ppes, and observe thatr ∈ preL. SinceL is

non-anticipating, we can choosêVr ⊆ L, such thatr ∈ preV̂r ,
and prêVr is controllable w.r.t.(Up ∪̇Ue, preL), andV̂r is rela-
tively closed w.r.t. cloL. Recall that relative closedness w.r.t. a
closed language implies closedness. In particular,V̂r is closed.
To establish the non-anticipating property ofLΣ, consider the
candidate

Vs := (p−ω
pe (V̂r ∪preV̂r)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω ).

Clearly,Vs ⊆ LΣ and preVs ⊆ prep−ω
pe (V̂r ∪preV̂r) = p−1

pepreV̂r .

Further, we have thats∈ preVs, since ppes= r ⊆ preV̂r ands⊆
pre((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω . To show controllability, pick an
arbitrary string ˆs∈ preVs andσ ∈ Σc ∪̇Up ∪̇Ue such that ˆsσ ∈

preLΣ. In particular, ppeŝ∈ ppep
−1
pepreV̂r = preV̂r and ppe(ŝσ)∈

ppepreLΣ ⊆ preL. Controllability of preV̂r w.r.t. preL im-

plies that ppe(ŝσ) ∈ preV̂r . In addition, there existsu ∈ Σω
pe,

such that ppe(ŝσ)u ∈ V̂r . We choosew ∈ Σω such that ˆsσw ∈

clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω and pωpe(ŝσw) = ppe(ŝσ)u. Note

thatŝσw∈ Vs and, hence, ˆsσ ∈ preVs. Finally, observe that

Vs = (p−ω
pe (V̂r ∪preV̂r)) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω )

= (p−ω
pe cloV̂r ∪p−ω

pe preV̂r)∩ (clo((Yp(YcUc)
∗Up)

∗(YeUe)
∗)ω)

= (clop−ω
pe V̂r) ∩ (clo((Yp(YcUc)

∗Up)
∗(YeUe)

∗)ω).

As the intersection of two closed languages,Vs is closed. 2

Proposition 10. If H is a solution to the control problem
(Σ, L, E), and ifL is a non-anticipating IO-plant, then

K6 K is ω-controllable w.r.t.(Uc ∪̇Ue, cloK).

Proof. We prove the claim by construction of a suitableVs⊆K
for an arbitrarily chosens∈ preK. Referring to Proposition 9,
there existsṼs ⊆ LΣ, such thats∈ preṼs, and prẽVs is con-
trollable w.r.t.(Σc ∪̇Up ∪̇Ue, preLΣ), andṼs is relatively closed
w.r.t. cloLΣ. In particular,Ṽs is closed. By Proposition 6,K
satisfies K1–K5. Referring to K2, we choosêVs ⊆ K with
s∈ preV̂s, and prêVs is controllable w.r.t.(Σuc, preLΣ), andV̂s
is relatively closed w.r.t.LΣ.

To establish ω-controllability of K w.r.t. cloK, consider
the candidateVs := Ṽs ∩ V̂s. Clearly, Vs ⊆ K. Furthermore,
Vs = Ṽs∩ V̂s = Ṽs∩ (cloV̂s)∩LΣ = Ṽs∩ (cloV̂s) = (cloṼs)∩

(cloV̂s) ⊇ cloVs, i.e.,Vs is closed and, thus, relatively closed
w.r.t. any superset. To show controllability of preVs w.r.t. preK,
we pickr ∈ pre(Ṽs∩V̂s) ⊆ (preṼs)∩ (preV̂s) andσ ∈Uc ∪̇Ue

such thatrσ ∈ preK ⊆ preLΣ. By controllability of preṼs and
preV̂s, it follows that rσ ∈ (preṼs) ∩ (preV̂s). To establish
rσ ∈pre(Ṽs∩V̂s), observe that each event inΣ is uncontrollable
for either preṼs or preV̂s. Thus, starting withr0 = rσ , we
can construct a strictly increasing sequence(rn) ⊆ (preṼs)∩

(preV̂s) with limit w := lim(rn) ∈ (cloṼs)∩ (cloV̂s). SinceṼs

is closed, we havew ∈ Ṽs ⊆ LΣ. By relative closedness of̂Vs

w.r.t.LΣ, we obtainw∈ V̂s. Hence,rσ ∈ pre(Ṽs∩V̂s). 2

4.2 Propagation of plant properties

We are now in the position to show that the plant properties P1–
P3 are retained under closed-loop composition, i.e., the external
closed-loop behaviour is again a non-anticipating IO-plant.

Theorem 11.For a non-anticipating IO-plantL and an IO-
specificationE , consider a solutionH of the control problem
(Σ, L, E). Then the external closed-loop pω

ceK, with K = LΣ ∩
HΣ, is a non-anticipating IO-plant, too.

Proof. Regarding P1, we refer to K1 and E1 to obtain pω
ceK ⊆

pω
ceE ⊆ ((YcUc)

∗(YeUe)
∗)ω . Regarding P2, recall from K5 that

K has locally free inputsUc andUe, that are preserved under
projection toΣce. We are left to show P3. Picks∈ prepω

ceK.
Then, there existst ∈ preK such that pcet = s. According to
K6, we can choosêVt ⊆ K such thatt̂ ∈ preV̂t , and prêVt

is controllable w.r.t.(Uc ∪̇Ue, preK), and V̂t is closed. As a
candidate to establish P3, letVs := pω

ceV̂t . Note thatVs ⊆ pω
ceK.

Further,s= pcet ∈ pcepreV̂t = preVs. To verify controllability
of preVs, consider an arbitrary ˆs∈ preVs andσ ∈Uc ∪̇Ue such
thatŝσ ∈prepω

ceK. Then, there existŝt ∈preK such that pcet̂ = ŝ
andt̂ ∈ preV̂t . Furthermore,̂tσ ∈ preK, since ˆsσ = pce(t̂σ) ∈

pcepreK. Controllability of preV̂t implies thatt̂σ ∈ preV̂t and
pce(t̂σ) ∈ pcepreV̂t = preVs. Thus, preVs is controllable w.r.t.
(Uc ∪̇Ue, prepω

ceK). To verify closedness ofVs, observe that
Vs = pω

ceV̂t = (pω
cecloV̂t)∩Σω

ce= clopω
ceV̂t . 2

4.3 Abstraction based controller design

We adapt the argument presented in (Moor et al., 2011) to the
closed-loop configuration with external signals.

Theorem 12.Given a control problem(Σ, L, E) with a non-
anticipating IO-plantL, letL′ ⊆ Σω denote a plant abstraction,
i.e.,L⊆ L′. Then, any solution of(Σ, L′, E) solves(Σ, L, E).

To prove Theorem 12, we use the following technical lemma.

Lemma 13.For a non-anticipating IO-plantL, the full be-
haviour can be represented as a unionLΣ = ∪a∈ALa, where for
all a∈ A

(i) La has locally free inputsUc, Up ∪̇Yc, andUe.
(ii) La is closed.

Proof. Technically, P3 together with Proposition 9 implies
that LΣ itself is the supremalω-controllable sublanguage of
LΣ. Thus, by (Moor et al., 2011), Proposition 12,LΣ can be



represented as a unionLΣ = ∪a∈ALa, where, for each,a ∈ A,
preLa is controllable w.r.t.(Σc ∪̇Up ∪̇Ue, preLΣ) and La is
closed. To establish (i), we picks∈ Σ∗, µ ,µ ′ ∈ Uc, with sµ ∈
preLa. The locally free input of preLΣ impliessµ ′ ∈ preLΣ, and
controllability of preLa w.r.t. preLΣ implies, thatsµ ′ ∈ preLa.
Locally free inputsUp ∪̇Yc, andUe are verified likewise.

Lemma 14.Under the hypothesis of Theorem 12, consider any
solution H of the control problem(Σ, L′, E). If V ′ ⊆ L′

Σ ∩
HΣ, and if preV ′ is controllable w.r.t.(Σuc, L

′
Σ), and if V ′ is

relatively closed w.r.t.L′
Σ, thenLΣ andV ′ are non-conflicting.

Proof. Pick an arbitrary strings∈ (preLΣ)∩(preV ′). Referring
to Lemma 13, we representLΣ as LΣ = ∪a∈ALa with La
satisfying conditions (i) and (ii). In particular, there existsa∈A
with s∈ preLa ⊆ LΣ ⊆ L′

Σ. To extends∈ (preLa)∩ (preV ′)
by one event, pickσ such thatsσ ∈ preLa. If σ ∈ Σuc, then
controllability of preV ′ impliessσ ∈ preV ′, and we end up with
sσ ∈ (preLa)∩ (preV ′). If, on the other hand,σ ∈Up ∪̇Yc, we
obtain by Lemma 13, condition (ii), thats(Up ∪̇Yc) ⊆ preLa.
Referring to the event ordering in the definition ofLΣ, we
decomposes= rν with ν ∈ Uc ∪̇Yp. Again by the definition
of LΣ, now usingrν ∈ preV ′ ⊆ preLΣ, we obtain the existence
of σ ∈ Up ∪̇Yc such thatsσ ∈ preV ′ and, thus, conclude with
sσ ∈ (preLa)∩(preV ′). Repeatedly extendings, we construct a
strictly monotone sequence(sn)⊆ (preLa)∩(preV ′) with limit
w := lim(sn) ∈ (cloLa)∩ (cloV ′) ands= s0 < w. SinceLa is
closed, we obtainw∈ La to observew∈ La∩ (cloV ′) ⊆ LΣ ∩
L′

Σ ∩ (cloV ′) = LΣ ∩V ′. In particular,s∈ pre(LΣ ∩V ′). 2

Coming back to the proof of Theorem 12, note thatH trivially
satisfies C1, sinceLΣ ∩HΣ ⊆ L′

Σ ∩HΣ ⊆ E . Regarding C2,
we pick anys∈ (preLΣ)∩ (preHΣ). SinceH is a solution to
(Σ, L′, E), we can chooseV ′

s ⊆ L′
Σ ∩HΣ such thats∈ preV ′

s,
and preV ′

s is controllable w.r.t.(Σuc, preL′
Σ), andV ′

s is relatively
closed w.r.t.L′

Σ. We choose the candidateVs := V ′
s∩LΣ. Ob-

serve thatVs ⊆ L′
Σ ∩HΣ ∩LΣ = HΣ ∩LΣ and s ∈ (preLΣ)∩

(preHΣ) ∩ (preV ′
s). By Lemma 14, we obtains ∈ pre(LΣ ∩

V ′
s) = preVs. Regarding controllability, pick anysν ∈ preLΣ

with s∈ preVs andν ∈ Σuc. By controllability of preV ′
s w.r.t.

preL′
Σ and LΣ ⊆ L′

Σ, we deduce thatsν ∈ preV ′
s. Again by

Lemma 14, we obtainsν ∈ pre(LΣ ∩V ′
s). Hence, preVs is con-

trollable w.r.t. preLΣ. Regarding relative closedness, observe
that(cloVs)∩LΣ ⊆ (cloV ′

s)∩L′
Σ ∩LΣ = V ′

s∩LΣ = Vs. 2

As our main result, we proved, that the relevant plant properties
P1–P3 ofL are retained under closed-loop composition with
H and, thus, also satisfied byLH. Moreover, the solutions
of (ΣH, pω

ceE , E
H) possess both properties C1 and C2 and,

thus, also solve the actual problem(ΣH, LH, EH). In summary,
Theorem 11 and Theorem 12 formally justify the hierarchical
controller design as proposed by Figure 2.

5. CONCLUSION

In this paper, we discussed a closed-loop configuration with
external signals, where plant and controller dynamics are rep-
resented asω-languages. Based on Willems’ notion of input-
output systems, we identified the requirements P1–P3 for the
plant behaviour, such that controller synthesis can be based
on an abstraction while maintaining liveness and safety prop-
erties for the actual closed-loop. We have shown that the re-
quirements P1–P3 are preserved under closed-loop composi-
tion, and, hence, that the closed-loop can again serve as a
plant model. This leads to a hierarchical control architecture, in

which we repeatedly design a controller, derive the closed-loop
and use the specification as an abstraction for the subsequent
controller design. In contrast to earlier work, e.g. (Perk et al.,
2006), we treat more general liveness properties possessedby
the plant or required by the specification.

Ongoing work focuses on decentralized control architectures,
involving dependencies between subsystems, and the develop-
ment of algorithms for the practical solution of further synthesis
problems. Besides, we address the utilization of the presented
configuration in the context of industrial applications. Special
attention is paid to modular and reusable plant models and
specifications, e.g., for production or transportation systems.
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